Nonlinear Dynamics

, Volume 85, Issue 2, pp 973–980 | Cite as

Vector combined and crossing Kuznetsov–Ma solitons in \(\mathcal {PT}\)-symmetric coupled waveguides

  • Ji-tao Li
  • Yu Zhu
  • Quan-tao Liu
  • Jin-zhong Han
  • Yue-yue Wang
  • Chao-qing Dai
Original Paper


A variable-coefficient coupled nonlinear Schrödinger equation with balanced gain and loss is studied, and two kinds of analytical Kuznetsov–Ma soliton solutions including combined Kuznetsov–Ma soliton solution and crossing two-Kuznetsov–Ma soliton solution are obtained. In a diffraction decreasing system, the control for the excitation of two kinds of Kuznetsov–Ma soliton including rear excitation, peak excitation and initial excitation is investigated. The different peak locations of Kuznetsov–Ma soliton along the propagation direction appear repeatedly, which makes rear excitation, peak excitation and initial excitation happen again and again.


Vector combined and crossing Kuznetsov–Ma solitons Coupled nonlinear Schrödinger equation \({\mathcal {PT}}\)-symmetry  Controllable excitation 



This work was supported by the National Natural Science Foundation of China (11404289 and 11547227), the Education Department of Henan Province (16A140040) and the High-level Talents Research and Startup Foundation Projects for Doctors of Zhoukou Normal University (ZKNUC2015104).


  1. 1.
    Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, Y.X., Jiang, Y.F., Xu, Z.X., Xu, F.Q.: Nonlinear tunnelling effect of combined Kuznetsov–Ma soliton in (\(3+1\))-dimensional PT-symmetric inhomogeneous nonlinear couplers with gain and loss. Nonlinear Dyn. 82, 589–597 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhou, Q., Yu, H., Xiong, X.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80, 983–987 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: optical solitons in cascaded system with spatio-temporal dispersion. Optoelectron. Adv. Mater. Rapid Commun. 17, 74–81 (2015)Google Scholar
  6. 6.
    Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)CrossRefGoogle Scholar
  10. 10.
    Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)CrossRefGoogle Scholar
  11. 11.
    Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in Birefringent fibers with four-wave mixing for Kerr law nonlinearity. Rom. J. Phys. 59, 582–589 (2014)Google Scholar
  12. 12.
    Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrodinger equation. Commun. Nonlinear Sci. Num. Simul. 18, 2426–2435 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dai, C.Q., Xu, Y.J.: Exact solutions for a Wick-type stochastic reaction Duffing equation. Appl. Math. Model. 39, 7420–7426 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81, 733–738 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Mus-slimani, Z.H.: PT-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)CrossRefGoogle Scholar
  16. 16.
    Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)CrossRefGoogle Scholar
  17. 17.
    Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (\(3+1\))-dimensional cubic-quintic Schrödinger equation in \({\cal PT}\)-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)CrossRefGoogle Scholar
  18. 18.
    Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Dokl. Akad. Nauk SSSR 236, 575–577 (1977)Google Scholar
  19. 19.
    Ma, Y.C.: The perturbed plane-wave solution of the cubic Schrodinger equation. Stud. Appl. Math. 60, 43–58 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dai, C.Q., Zhu, H.P.: Superposed Kuznetsov–Ma solitons in a two-dimensional graded-index grating waveguide. J. Opt. Soc. Am. B 30, 3291–3297 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhu, H.P., Pan, Z.H., Fang, J.P.: Controllability for two-Kuznetsov–Ma solitons in a (\(2+1\))-dimensional graded-index grating waveguide. Eur. Phys. J. D 68, 69-6 (2014)Google Scholar
  22. 22.
    Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov–Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862 (2014)CrossRefGoogle Scholar
  23. 23.
    Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)CrossRefGoogle Scholar
  24. 24.
    Abdullaeev, F.: Theory of solitons in inhomogeneous media. Wiley, New York (1994)Google Scholar
  25. 25.
    Chen, Y., Snyder, A.W., Payne, D.N.: Twin core nonlinear couplers with gain and loss. IEEE J. Quantum Electron. 28, 239–245 (1992)CrossRefGoogle Scholar
  26. 26.
    Ramezani, H., Kottos, T.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 043803 (2010)CrossRefGoogle Scholar
  27. 27.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)CrossRefGoogle Scholar
  28. 28.
    Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion management. IEEE J. Sel. Top. Quantum Electron. 8, 418–431 (2002)CrossRefGoogle Scholar
  29. 29.
    Serkin, V.N., Belyaeva, T.L.: High-energy optical Schrödinger solitons. JETP Lett. 74, 573 (2001)CrossRefGoogle Scholar
  30. 30.
    Dai, C.Q., Wang, Y.Y.: Superposed Akhmediev breather of the (\(3+1\))-dimensional generalized nonlinear Schrödinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)CrossRefGoogle Scholar
  31. 31.
    Dai, C.Q., Zhu, S.Q., Wang, L.L.: Exact spatial similaritons for the generalized (\(2+1\))-dimensional nonlinear Schrodinger equation with distributed coefficients. Europhys. Lett. 92, 24005 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ji-tao Li
    • 1
  • Yu Zhu
    • 1
  • Quan-tao Liu
    • 2
  • Jin-zhong Han
    • 1
  • Yue-yue Wang
    • 3
  • Chao-qing Dai
    • 3
  1. 1.School of Physics and Telecommunications EngineeringZhoukou Normal UniversityZhoukouChina
  2. 2.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina
  3. 3.School of SciencesZhejiang Agriculture and Forestry UniversityLin’anChina

Personalised recommendations