Advertisement

Nonlinear Dynamics

, Volume 85, Issue 1, pp 303–316 | Cite as

Adaptive stabilization and synchronization of non-diffusively coupled complex networks with nonidentical nodes of different dimensions

  • Manchun TanEmail author
  • Qi Pan
  • Xuan Zhou
Original Paper

Abstract

A class of non-diffusively coupled complex networks consisting of nodes of different dimensions is studied, in which the internal time delays are different from the coupling delays. Proper adaptive controllers are proposed for the stabilization and function matrix projective synchronization of such complex networks, respectively. The symmetric or diffusive conditions for the coupling matrices are not required. Finally, the results are applied to complex networks of chaotic oscillators showing the effectiveness of the proposed controllers.

Keywords

Complex networks Adaptive stabilization Adaptive synchronization Nodes of different dimensions Non-diffusive coupling 

Notes

Acknowledgments

The research is supported by grants from the National Natural Science Foundation of China (Nos.11471083 and 61572233), the Natural Science Foundation of Guangdong Province in China (No. 9151001003000005), and the Fundamental Research Funds for the Central Universities (No. 21612443).

References

  1. 1.
    Chen, G.R.: Pinning control and synchronization on complex dynamical networks. Int. J. Control Autom. Syst. 12, 221–230 (2014)CrossRefGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tan, M., Zhang, Y.: New sufficient conditions for global asymptotic stability of Cohen–Grossberg neural networks with time-varying delays. Nonlinear Anal. Real World Appl. 10, 2139–2145 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lv, J.H., Chen, G.R.: A time-varying complex dynamical network models and its controlled synchronization criteria. IEEE Trans. Autom. Control 50, 841–846 (2005)CrossRefGoogle Scholar
  5. 5.
    Wang, Z., Zhang, H.: Synchronization stability in complex interconnected neural networks with nonsymmetric coupling. Neurocomputing 108, 84–92 (2013)CrossRefGoogle Scholar
  6. 6.
    Huang, T., Yang, Z., Li, C.: Theory and applications of complex networks. Math. Probl. Eng. 2015, 1–2 (2014)Google Scholar
  7. 7.
    Chen, J., Lu, J., Zhou, J.: Topology identification of complex networks from noisy time series using ROC curve analysis. Nonlinear Dyn. 75, 761–768 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Patan, K.: Stability analysis and the stabilization of a class of discrete-time dynamic neural networks. IEEE Trans. Neural Netw. 18, 660–673 (2007)CrossRefGoogle Scholar
  10. 10.
    Lu, J.Q., Ho, D.W.C.: Stabilization of complex dynamical networks with noise disturbance under performance constraint. Nonlinear Anal. Real World Appl. 12, 1974–1984 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lu, W., Li, X., Rong, Z.: Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica 46, 116–121 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zheng, C.D., Shan, Q.H., Zhang, H.G.: On stabilization of stochastic Cohen–Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 24, 800–811 (2013)CrossRefGoogle Scholar
  13. 13.
    Yu, W.W., Chen, G.R., Lu, J.H.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xiao, Y.Z., Xu, W., Li, X.C.: Adaptive complete synchronization of chaotic dynamical networks with unknown and mismatched parameters. Chaos 17, 033118 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, X.W., Li, P., Chen, T.P.: Cluster synchronization for delayed complex networks via periodically intermittent pinning control. Neurocomputing 162, 191–200 (2015)CrossRefGoogle Scholar
  16. 16.
    Anzo, A., Barajas-Ramirez, J.: Synchronization in complex networks under structural evolution. J. Frankl. Inst. 351, 358–372 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I(51), 2074–2087 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lee, T., Park, J., Ji, D., Kwon, O., Lee, S.: Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control. Appl. Math. Comput. 218, 6469–6481 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tanaka, K., Wang, H.: Fuzzy control of chaotic systems using LIMs: regulation, synchronization and chaos model following. IEEE World Congr. Fuzzy Syst. Proc. 1, 434–439 (1988)Google Scholar
  20. 20.
    Sun, Y., Li, W., Ruan, J.: Finite-time generalized outer synchronization between two different complex networks. Commun. Theor. Phys. 58, 697–703 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Aghababa, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model. 35, 3080–3091 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313–2327 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mei, J., Jiang, M., Xu, W., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18, 2462–2478 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hu, M., Xu, Z.: Adaptive feedback controller for projective synchronization. Nonlinear Anal. Real World Appl. 9, 1253–1260 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhou, J., Xiang, L., Liu, Z.: Synchronization in complex delayed dynamical networks via impulsive control. Phys. A 384, 684–692 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, Q., Lu, J., Zhao, J.: Impulsive synchronization of general continuous and discrete-time complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 15, 1063–1070 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wu, W., Zhou, W., Chen, Q.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I(56), 829–839 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, Y., Fan, Y., Wang, Q., Zhang, Y.: Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers. IEEE Trans. Circuits Syst. I(59), 1786–1795 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fan, Y., Wang, Y., Zhang, Y., Wang, Q.: The synchronization of complex dynamical networks with similar nodes and coupling time-delay. Appl. Math. Comput. 219, 6719–6728 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Dai, H., Jia, L., Zhang, Y.: Adaptive generalized matrix projective lag synchronization between two different complex networks with nonidentical nodes and different dimensions. Chin. Phys. B 21, 120508 (2012)CrossRefGoogle Scholar
  31. 31.
    Dai, H., Si, G., Zhang, Y.: Adaptive generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimensions. Nonlinear Dyn. 74, 629–648 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tan, M., Tian, W.X.: Finite-time stabilization and synchronization of complex dynamical networks with nonidentical nodes of different dimensions. Nonlinear Dyn. 79, 731–741 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhao, M., Zhang, H.G., Wang, Z.L., Liang, H.J.: Synchronization between two general complex networks with time-delay by adaptive periodically intermittent pinning control. Neurocomputing 144, 215–221 (2014)CrossRefGoogle Scholar
  34. 34.
    Liang, Y., Wang, X.Y., Eustace, J.: Adaptive synchronization in complex networks with non-delay and variable delay couplings via pinning control. Neurocomputing 123, 292–298 (2014)CrossRefGoogle Scholar
  35. 35.
    Wei, Z., Moroz, I., Liu, A.: Degenerate Hopf bifurcations, hidden attractors and control in the extended Sprott E system with only one stable equilibrium. Turk. J. Math. 38, 672–687 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hu, C., Yu, J., Jiang, H.J., Teng, Z.D.: Synchronization of complex community networks with nonidentical nodes and adaptive coupling strength. Phys. Lett. A 375, 873–879 (2011)CrossRefzbMATHGoogle Scholar
  37. 37.
    Lu, H.T.: Chaotic attractors in delayed neural networks. Phys. Lett. A 298, 109–116 (2012)CrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, K., Teng, Z.D., Jiang, H.J.: Adaptive synchronization in an array of linearly coupled neural networks with reaction-diffusion terms and time delays. Commun. Nonlinear Sci. Numer. Simul. 17, 3866–3875 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, J.L., Wu, H.N., Guo, L.: Novel adaptive strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Trans. Neural Netw. Learn. Syst. 25, 429–440 (2014)CrossRefGoogle Scholar
  40. 40.
    Cai, S., He, Q., Hao, J., Liu, Z.: Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes. Phys. Lett. A 374, 2539–2550 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wu, Z., Fu, X.: Cluster projective synchronization between community networks with nonidentical nodes. Phys. A 391, 6190–6198 (2012)CrossRefGoogle Scholar
  42. 42.
    Wu, X., Lu, H.: Generalized function projective (lag, anticipated and complete) synchronization between two different coupled complex with nonidentical nodes. Commun. Nonlinear Sci. Numer. Simul. 17, 3005–3021 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhao, J., Hill, D., Liu, T.: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE Trans. Circuits Syst. I(58), 584–594 (2011)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Du, H.: Function projective synchronization in drive-response dynamical networks with nonidentical nodes. Chaos Solitons Fractals 44, 510–514 (2011)CrossRefzbMATHGoogle Scholar
  45. 45.
    Gao, H.J., James, L., Chen, G.R.: New criteria for synchronization stability of general complex dynamical networks with coupling delays. Phys. Lett. A 360, 263–273 (2006)CrossRefzbMATHGoogle Scholar
  46. 46.
    Du, H., Shi, P., Lu, N.: Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal. Real World Appl. 14, 1182–1190 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Zheng, Z., Tan, M., Wang, Q.: Hybrid synchronization of two delayed systems with uncertain parameters. Adv. Neural Netw. 7367, 285–292 (2012)Google Scholar
  48. 48.
    Yang, X.S., Cao, J.D., Lu, J.Q.: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans. Circuits Syst. I(60), 363–376 (2013)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Cao, J.D., Wan, Y.: Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw. 53, 165–172 (2014)CrossRefzbMATHGoogle Scholar
  50. 50.
    Cheng, Q., Cao, J.: Synchronization of complex dynamical networks with discrete time delays on time scales. Neurocomputing 151, 729–736 (2015)CrossRefGoogle Scholar
  51. 51.
    Sun, W.W., Hao, F., Chen, X.: Adaptive synchronization of asymmetric coupled networks with multiple coupling delays. Int. J. Gen. Syst. 41, 409–431 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Liu, B., Wang, X.L., Su, H.S., et al.: Adaptive synchronization of complex dynamical networks with time-varying delays. Circuits Syst. Signal Process. 33, 1173–1188 (2014)MathSciNetCrossRefGoogle Scholar
  53. 53.
    De Lellis, P., di Bernardo, M., Garofalo, F.: Synchronization of complex networks through local adaptive coupling. Chaos 18, 037110 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Wang, W.P., Li, L.X., Peng, H.P., Yuan, J.L., Xiao, J.H., Yang, Y.X.: Adaptive synchronization of complex dynamical multilinks networks with similar nodes. Math. Probl. Eng. 2013, 736585 (2013)MathSciNetGoogle Scholar
  55. 55.
    Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C.: Adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer. Appl. Math. Comput. 219, 5984–5995 (2013)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Yang, Z.Q., Zhang, Q., Chen, Z.Q.: Adaptive linear generalized synchronization between two nonidentical networks. Commun. Nonlinear Sci. Numer. Simul. 17, 2628–2636 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Zhang, L.L., Wang, Y.H., Huang, Y.Y., Chen, X.S.: Delay-dependent synchronization for non-diffusively coupled time-varying complex dynamical networks. Appl. Math. Comput. 259, 510–522 (2015)MathSciNetGoogle Scholar
  58. 58.
    Jiang, S.Q., Cai, G.L., Cai, S.M., Tian, L.X., Lu, X.B.: Adaptive cluster general projective synchronization of complex dynamic networks in finite time. Commun. Nonlinear Sci. Numer. Simul. 28, 194–200 (2015)CrossRefGoogle Scholar
  59. 59.
    Zhou, B., Liao, X.F., Huang, T.W., Chen, G.: Pinning exponential synchronization of complex networks via event-triggered communication with combinational measurements. Neurocomputing 157, 199–207 (2015)CrossRefGoogle Scholar
  60. 60.
    Batista, C.A.S., Batista, A.M., de Pontes, J.A.C., Viana, R.L., Lopes, S.R.: Chaotic phase synchronization in scale-free networks of bursting neurons. Phys. Rev. E 76, 016218 (2007)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wu, Z.Y.: Cluster synchronization in colored community network with different order node dynamics. Commun. Nonlinear Sci. Numer. Simul. 19, 1079–1087 (2014)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Bauer, F., Atay, F.M., Jost, J.: Synchronization in discrete-time networks with general pairwise coupling. Nonlinearity 22, 2333–2351 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Liu, G.Q., Xu, X.M.: Controlled synchronizability analysis for non-diffusively coupled complex networks. J. Electron. Inf. Technol. 34, 722–727 (2012)Google Scholar
  64. 64.
    Qin, H.X., Ma, J., Jin, W.Y.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China-Technol. Sci. 57, 936–946 (2014)Google Scholar
  65. 65.
    Ma, J., Qin, H.X., Song, X.L., Chu, R.T.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)CrossRefGoogle Scholar
  66. 66.
    Ma, J., Song, X.L., Tang, J., Wang, C.N.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)CrossRefGoogle Scholar
  67. 67.
    De Lellis, P., di Bernardo, M., Russo, G.: On QUAD, Lipschitz, and contracting vector fields for consensus and synchronization of networks. IEEE Trans. Circuits Syst. I(58), 576–583 (2011)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsJinan UniversityGuangzhouChina

Personalised recommendations