Nonlinear Dynamics

, Volume 84, Issue 4, pp 2447–2465 | Cite as

Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH

Original Paper

Abstract

A parallel computation methodology is proposed to study the dynamic fracture process of a flexible multibody system with initial cracks. The potential fracture domains of the flexible body system are described by using the particles of smoothed particle hydrodynamics (SPH), and the other domains of the system are modeled by using the finite elements of absolute nodal coordinate formulation (ANCF). In order to preserve the continuity of deformation field, extra virtual particles are uniformly embedded into the interface, where the finite elements of ANCF and the particles of SPH are connected, so as to transmit the interaction forces. The OpenACC derivatives are used to parallelize both the particle contact detection and the solution of the integral equations. A predictor-corrector scheme is used to solve the ordinary differential equations for the particles of SPH, while the generalized-alpha method is used to solve the huge set of differential algebraic equations for the multibody system. The OpenMP derivatives are also used to parallelize the evaluation of the elastic force vectors and their Jacobi matrices of the finite elements. Finally, three case studies are given to validate the proposed computation methodology.

Keywords

Absolute nodal coordinate formulation (ANCF) Smoothed particle hydrodynamics (SPH) Flexible multibody system Dynamic fracture Crack growth 

References

  1. 1.
    Belytschko, T., Chen, H., Xu, J., Zi, G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58, 1873–1905 (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Taylor, D., Cornetti, P., Pugno, N.: The fracture mechanics of finite crack extension. Eng. Fract. Mech. 72, 1021–1038 (2005)CrossRefGoogle Scholar
  3. 3.
    Mergheim, J., Kuhl, E., Steinmann, P.: A finite element method for the computational modelling of cohesive cracks. Int. J. Numer. Methods Eng. 63, 276–289 (2005)CrossRefMATHGoogle Scholar
  4. 4.
    Armero, F., Linder, C.: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int. J. Fract. 160, 119–141 (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Li, M., Werner, E., You, J.: Fracture mechanical analysis of tungsten armor failure of a water-cooled divertor target. Fusion Eng. Des. 89, 2716–2725 (2014)CrossRefGoogle Scholar
  6. 6.
    Song, J., Wang, H., Belytschko, T.: A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)CrossRefMATHGoogle Scholar
  8. 8.
    Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley, New York (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  10. 10.
    Wells, A.A.: Application of fracture mechanics at and beyond general yield. Br. Weld. J. 10, 563–570 (1963)Google Scholar
  11. 11.
    Sukumar, N., Belytschko, T.: Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Methods Eng. 48, 1741–1760 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Portela, A., Aliabadi, M.H., Rooke, D.P.: The dual boundary element method: effective implementation for crack problems. Int. J. Numer. Methods Eng. 33, 1269–1287 (1992)CrossRefMATHGoogle Scholar
  13. 13.
    Pan, E.: A general boundary element analysis of 2-D linear elastic fracture mechanics. Int. J. Fract. 88, 41–59 (1997)CrossRefGoogle Scholar
  14. 14.
    Areias, P.M.A., Belytschko, T.: Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int. J. Numer. Methods. Eng. 63, 760–788 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1020 (1977)CrossRefGoogle Scholar
  16. 16.
    Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)CrossRefMATHGoogle Scholar
  17. 17.
    Benz, W., Asphaug, E.: Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995)CrossRefMATHGoogle Scholar
  18. 18.
    Xu, F., Zhao, Y., Li, Y., Kikuchi, M.: Study of numerical and physical fracture with SPH method. Acta Mech. Solida Sin. 23, 49–56 (2010)CrossRefGoogle Scholar
  19. 19.
    Maurel, B., Combescure, A.: An sph shell formulation for plasticity and fracture analysis in explicit dynamics. Int. J. Numer. Methods Eng. 76, 949–971 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)CrossRefMATHGoogle Scholar
  21. 21.
    Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method, p. 692. CRC Press, Boca Raton (2003)MATHGoogle Scholar
  22. 22.
    Das, R., Cleary, P.: Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics. Theor. Appl. Fract. Mech. 53, 47–60 (2010)CrossRefGoogle Scholar
  23. 23.
    Chakraborty, S., Shaw, A.: A pseudo-spring based fracture model for SPH simulation of impact dynamics. Int. J. Impact Eng. 58, 84–95 (2013)CrossRefGoogle Scholar
  24. 24.
    Liu, W.K., Chen, Y.: Wavelet and multiple scale reproducing kernel methods. Int. J. Numer. Methods Fluids 21, 901–931 (1995)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Chen, J.K., Beraun, J.E., Carney, T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Comput. Methods Appl. Mech. Eng. 46, 231–252 (1999)MATHGoogle Scholar
  26. 26.
    Chen, J.K., Beraun, J.E., Jih, C.J.: Completeness of corrective smoothed particle method for linear elastodynamics. Comput. Mech. 24, 273–285 (1999)CrossRefMATHGoogle Scholar
  27. 27.
    Monaghan, J.J.: SPH without a tensile instability. J. Comput. Phys. 159, 290–311 (2000)CrossRefMATHGoogle Scholar
  28. 28.
    Gray, J.P., Monaghan, J.J., Swift, R.P.: SPH elastic dynamics. Comput. Methods Appl. Mech. Eng. 190, 6641–6662 (2001)CrossRefMATHGoogle Scholar
  29. 29.
    Hu, W., Tian, Q., Hu, H.Y.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75, 653–671 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pazouki, A., Serban, R., Negrut, D.: A high performance computing approach to the simulation of fluid-solid interaction problems with rigid and flexible components. Arch. Mech. Eng. 61, 227–251 (2014)Google Scholar
  31. 31.
    Rojek, J., Oñate, E., Labra, C., Kargl, H.: Discrete element simulation of rock cutting. Int. J. Rock Mech. Min. 48, 996–1010 (2011)CrossRefGoogle Scholar
  32. 32.
    Johnson, G.R.: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl. Eng. Des. 150, 265–74 (1994)CrossRefGoogle Scholar
  33. 33.
    Johnson, G.R., Stryk, R.A., Beissel, S.R.: SPH for high velocity impact computations. Comput. Methods Appl. Mech. Eng. 139, 347–373 (1996)CrossRefMATHGoogle Scholar
  34. 34.
    Fernández-Méndez, S., Bonet, J., Huerta, A.: Continuous blending of SPH with finite elements. Comput. Struct. 83, 1448–1458 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, Z., Qiang, H., Gao, W.: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Eng. Struct. 33, 255–264 (2011)CrossRefGoogle Scholar
  36. 36.
    Chuzel-Marmot, Y., Ortiz, R., Combescure, A.: Three dimensional SPH–FEM gluing for simulation of fast impacts on concrete slabs. Comput. Struct. 89, 2484–2494 (2011)CrossRefMATHGoogle Scholar
  37. 37.
    Rabczuk, T., Xiao, S.P., Sauer, M.: Coupling of meshfree methods with finite elements: basic concept and test results. Commun. Numer. Methods Eng. 22, 1031–65 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Vuyst, T.D., Vignjevic, R., Campbell, J.C.: Coupling between meshless and finite element methods. Int. J. Impact Eng. 31, 1054–1064 (2005)CrossRefGoogle Scholar
  39. 39.
    Shabana, A.A.: An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies. Technical report no. MBS96-1-UIC, University of Illinois at Chicago (1996)Google Scholar
  40. 40.
    Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)CrossRefMATHGoogle Scholar
  41. 41.
    Liu, C., Tian, Q., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Tian, Q., Zhang, Y., Chen, L., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)CrossRefGoogle Scholar
  43. 43.
    Olshevskiy, A., Dmitrochenko, O., Dai, M.D., Kim, C.W.: The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes. Multibody Syst. Dyn. 34, 1–29 (2014)MathSciNetMATHGoogle Scholar
  44. 44.
    Yoo, W.S., Dmitrochenko, O., Yu, D.: Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA (2005), DETC2005-84720Google Scholar
  45. 45.
    Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 369–384 (2013)Google Scholar
  47. 47.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Libersky, L.D., Petschek, A.G.: Smooth particle hydrodynamics with strength of materials. Lect. Notes Phys. 395, 248–257 (1991)CrossRefGoogle Scholar
  49. 49.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Monaghan, J.J.: On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)CrossRefMATHGoogle Scholar
  51. 51.
    Swegle, J.W., Hicks, D.L., Attaway, S.W.: Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Balsara, D.S.: Von neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J. Comput. Phys. 121, 357–372 (1995)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)CrossRefMATHGoogle Scholar
  54. 54.
    Dilts, G.A.: Moving-least-squares-particle hydrodynamics-I. Consistency and stability. Int. J. Numer. Methods Eng. 44, 1115–1155 (1999)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139, 375–408 (1996)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Gutfraind, R., Savage, S.B.: Smoothed particle hydrodynamics for the simulation of broken-ice fields: Mohr–Coulombtype rheology and frictional boundary conditions. J. Comput. Phys. 134, 203–215 (1997)CrossRefMATHGoogle Scholar
  57. 57.
    Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int. J. Numer. Anal. Meth. Geomech. 38, 747–770 (2014)CrossRefGoogle Scholar
  58. 58.
    Shabana, A.A., Yakoub, R.Y.: Three-dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Design. 123, 606–613 (2001)CrossRefGoogle Scholar
  59. 59.
    Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Design. 123, 614–621 (2001)CrossRefGoogle Scholar
  60. 60.
    Liu, C., Tian, Q., Hu, H.Y., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54, 283–296 (2008)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Shabana, A.A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)CrossRefGoogle Scholar
  64. 64.
    Hussein, B., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equation: implementation. Nonlinear Dyn. 65, 369–382 (2011)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60, 371–375 (1993)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Tian, Q., Sun, Y.L., Liu, C., Hu, H.Y., Paulo, F.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013)CrossRefGoogle Scholar
  68. 68.
    Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)CrossRefMATHGoogle Scholar
  69. 69.
    Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–67 (2011)CrossRefMATHGoogle Scholar
  70. 70.
    Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)CrossRefGoogle Scholar
  71. 71.
    Tian, Q., Xiao, Q.F., Sun, Y.L., Hu, H.Y., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33, 259–284 (2015)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)CrossRefMATHGoogle Scholar
  73. 73.
    Hermanns, M.: Parallel Programming in Fortran 95 Using OpenMP. http://www.openmp.org/presentations/miguel/F95_OpenMPv1_v2.pdf (2002)
  74. 74.
    The OpenACC Standard. http://www.openacc-standard.org
  75. 75.
    Monaghan, J.J., Kos, A.: Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125, 145–154 (1999)CrossRefGoogle Scholar
  76. 76.
    Amini, Y., Emdad, H., Farid, M.: A new model to solve fluid–hypo-elastic solid interaction using the smoothed particle hydrodynamics (SPH) method. Eur. J. Mech. B Fluids. 30, 184–194 (2011)CrossRefMATHGoogle Scholar
  77. 77.
    James, M.G., Barry, J.G.: Mechanics of Materials, 7th edn. CL-Engineering, Stamford, CT (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations