Advertisement

Nonlinear Dynamics

, Volume 84, Issue 4, pp 2285–2304 | Cite as

Adaptive speed controller using swing leg motion for 3-D limit-cycle-based bipedal gait

  • Taisuke KobayashiEmail author
  • Tadayoshi Aoyama
  • Yasuhisa Hasegawa
  • Kosuke Sekiyama
  • Toshio Fukuda
Original Paper

Abstract

In this paper, we propose an adaptive speed controller (ASC) for a limit-cycle-based gait classified as a three-dimensional (3-D) bipedal gait. The limit-cycle-based gait of bipedal robots is excellent for energy efficiency. However, the forward and sideward moving speeds of these robots are difficult to control since they are autonomous systems and their behavior depends upon the initial states of every step. Therefore, in this study, we design a swing leg motion to appropriately adjust the initial states of every step. First, the forward speed is controlled by injecting the momentum of the swing leg, which shifts an energy equilibrium point from the original point to the reference point where the reference forward speed is achieved. Second, the sideward speed is controlled by asymmetric touchdown positions on the right and the left legs, which separate the limit cycle into two different limit cycles for each leg, and this separation leads to the sideward motion. The proposed ASC can be easily applied to an arbitrary limit-cycle-based gait because it is independent of the dynamics of the gait model. The performance of the proposed ASC was validated in terms of the residual error, step response, and disturbance rejection capabilities in numerical simulations for two examples of walking. The proposed ASC also achieved a highly energy-efficient gait, which was consistent with the analytical results. Further, the proposed ASC could adapt a robot to various environments that contained up and down slopes or an obstacle.

Keywords

3-D bipedal gait Limit cycle Adaptive speed controller Swing leg motion Passive dynamic autonomous control 

Supplementary material

Supplementary material 1 (mp4 9095 KB)

References

  1. 1.
    Alexander, R.M.: Energy-saving mechanisms in walking and running. J. Exp. Biol. 160, 55–69 (1991)Google Scholar
  2. 2.
    Aoyama, T., Hasegawa, Y., Sekiyama, K., Fukuda, T.: Stabilizing and direction control of efficient 3-d biped walking based on PDAC. IEEE/ASME Trans. Mechatron. 14(6), 712–718 (2009)CrossRefGoogle Scholar
  3. 3.
    Asano, F., Luo, Z.W., Yamakita, M.: Biped gait generation and control based on a unified property of passive dynamic walking. IEEE Trans. Robot. 21(4), 754–762 (2005)CrossRefGoogle Scholar
  4. 4.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  5. 5.
    Dong, H., Zhao, M., Zhang, N.: High-speed and energy-efficient biped locomotion based on virtual slope walking. Auton. Robots 30(2), 199–216 (2011)CrossRefGoogle Scholar
  6. 6.
    Fukuda, T., Hasegawa, Y., Sekiyama, K., Aoyama, T.: Multi-locomotion Robotic Systems: New Concepts of Bio-inspired Robotics. Springer, Berlin, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)Google Scholar
  8. 8.
    Hanazawa, Y., Asano, F.: High-speed biped walking using swinging-arms based on principle of up-and-down wobbling mass. In: IEEE International Conference on Robotics and Automation, pp. 5191–5196 (2015)Google Scholar
  9. 9.
    Hirose, M., Ogawa, K.: Honda humanoid robots development. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1850), 11–19 (2007). doi: 10.1098/rsta.2006.1917 CrossRefGoogle Scholar
  10. 10.
    Hobbelen, D.G.E., Wisse, M.: A disturbance rejection measure for limit cycle walkers: the gait sensitivity norm. IEEE Trans. Robot. 23(6), 1213–1224 (2007)CrossRefGoogle Scholar
  11. 11.
    Hobbelen, D.G.E., Wisse, M.: Controlling the walking speed in limit cycle walking. Int. J. Robot. Res. 27(9), 989–1005 (2008)CrossRefGoogle Scholar
  12. 12.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by a simple three-dimensional inverted pendulum model. Adv. Robot. 17(2), 131–147 (2003)CrossRefGoogle Scholar
  13. 13.
    Luo, X., Zhu, L., Xia, L.: Principle and method of speed control for dynamic walking biped robots. Robot. Auton. Syst. 66, 129–144 (2015)CrossRefGoogle Scholar
  14. 14.
    McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)CrossRefGoogle Scholar
  15. 15.
    Millard, M., McPhee, J., Kubica, E.: Foot placement and balance in 3d. ASME J. Comput. Nonlinear Dyn. 7(2), 021015-1–021015-14 (2012)CrossRefGoogle Scholar
  16. 16.
    Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., Yoshida, E.: Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans. Robot. 28(2), 427–439 (2012)CrossRefGoogle Scholar
  17. 17.
    Peuker, F., Maufroy, C., Seyfarth, A.: Leg-adjustment strategies for stable running in three dimensions. Bioinspir. Biomim. 7(3), 036,002 (2012)CrossRefGoogle Scholar
  18. 18.
    Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: IEEE-RAS International Conference on Humanoid Robot, pp. 200–207 (2006)Google Scholar
  19. 19.
    Raibert, M.: Legged Robots that Balance. MIT Press, Cambridge (1986)zbMATHGoogle Scholar
  20. 20.
    Saranlı, U., Arslan, Ömür, Ankaralı, M.M., Morgül, Ömer: Approximate analytic solutions to non-symmetric stance trajectories of the passive spring-loaded inverted pendulum with damping. Nonlinear Dyn. 62(4), 729–742 (2010)CrossRefGoogle Scholar
  21. 21.
    Seipel, J.E., Holmes, P.: Running in three dimensions: analysis of a point-mass sprung-leg model. Int. J. Robot. Res. 24(8), 657–674 (2005)CrossRefGoogle Scholar
  22. 22.
    Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)CrossRefGoogle Scholar
  23. 23.
    Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439(5), 72–75 (2006)Google Scholar
  24. 24.
    Vukobratovic, M., Frank, A., Juricic, D.: On the stability of biped locomotion. IEEE Trans. Biomed. Eng. BME–17(1), 25–36 (1970)CrossRefGoogle Scholar
  25. 25.
    Wight, D.L., Kubica, E.G., Wang, D.W.L.: Introduction of the foot placement estimator: a dynamic measure of balance for bipedal robotics. ASME J. Comput. Nonlinear Dyn. 3(1), 011009-1–011009-10 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Taisuke Kobayashi
    • 1
    Email author
  • Tadayoshi Aoyama
    • 2
  • Yasuhisa Hasegawa
    • 1
  • Kosuke Sekiyama
    • 1
  • Toshio Fukuda
    • 3
  1. 1.Department of Micro-Nano Systems EngineeringNagoya UniversityNagoyaJapan
  2. 2.Department of System CyberneticsHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Faculty of Science and EngineeringMeijo UniversityNagoyaJapan

Personalised recommendations