Advertisement

Nonlinear Dynamics

, Volume 84, Issue 4, pp 1901–1907 | Cite as

Discrete Hirota equation: discrete Darboux transformation and new discrete soliton solutions

  • Rui Guo
  • Xiao-Juan Zhao
Original Paper

Abstract

Under investigation in this paper is the discrete Hirota equation which is a combination of discrete NLS and discrete complex modified KdV equations. The discrete spectral problem analysis has been made, and discrete Darboux transformation(DT) has been constructed based on \(2\times 2\) discrete Lax pair for system (1.3). In addition, we have derived new discrete one-soliton solutions by using the obtained discrete DT for system (1.3). Figures have been plotted to display the dynamic features of discrete solitons.

Keywords

Discrete Hirota equation Soliton Discrete Darboux transformation 

Notes

Acknowledgments

We express our sincere thanks to each member of our discussion group for their suggestions. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11347165 and 61405137, by the Shanxi Province Science Foundation for Youths under Grant Nos. 2015021008 and by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant No.2013110.

References

  1. 1.
    Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  2. 2.
    Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger’s equation. Nonlinear Dyn. 63, 623–626 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kohl, R., Biswas, A., Milovic, D., Zerrad, E.: Optical soliton perturbation in a non-Kerr law media. Opt. Laser Technol. 40, 647–655 (2008)CrossRefGoogle Scholar
  4. 4.
    Li, L., Li, Z.H., Li, S.Q., Zhou, G.S.: Modulation instability and solitons on a cw background in inhomogeneous optical fiber media. Opt. Commun. 234, 169 (2004)CrossRefGoogle Scholar
  5. 5.
    Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)CrossRefGoogle Scholar
  6. 6.
    Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhou, Q., Zhu, Q.P., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Rom. Acad. Ser. A 16, 152–159 (2015)MathSciNetGoogle Scholar
  9. 9.
    Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Wei, C., Yao, P., Bhrawy, A., Biswas, A.: Bright, dark and singular optical solitons in cascaded system. Laser Phys. 25, 025402 (2015)CrossRefGoogle Scholar
  10. 10.
    Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Geng, X.G., Lv, Y.Y.: Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Biswas, A., Konar, S.: Quasi-particle theory of optical soliton interaction. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1202–1228 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kohl, R., Biswas, A., Milovic, D., Zerrad, E.: Optical soliton perturbation in a non-Kerr law media. Opt. Laser Technol. 40(4), 647–662 (2008)CrossRefGoogle Scholar
  14. 14.
    Zhang, C.C., Li, C.Z., He, J.S.: Darboux transformation and Rogue waves of the Kundu-nonlinear Schrödinger equation. Math. Methods Appl. Sci. 38(11), 2411–2425 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mirzazadeh, M., Arnous, Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Razborova, P., Kara, A.H., Biswas, A.: Additional conservation laws for Rosenau–KdV–RLW equation with power law nonlinearity by Lie symmetry. Nonlinear Dyn. 79, 743–748 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tian, S.F., Zhang, T.T., Zhang, H.Q.: Darboux transformation and new periodic wave solutions of generalized derivative nonlinear Schrodinger equation. Phys. Scr. 80, 065013 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    He, J.S., Guo, L.J., Zhang, Y.S., Chabchoub, A.: Theoretical and experimental evidence of non-symmetric doubly localized rogue waves. Proc. R. Soc. A 470, 20140318 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Toda, M.: Theory of Nonlinear Lattices. Springer, Berlin (1981)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kevrekidis, P.G.: The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    Xu, X.X.: Darboux transformation of a coupled lattice soliton equation. Phys. Lett. A 362, 205–211 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhu, Z.N., Zhao, H.Q., Zhang, F.F.: Explicit solutions to an integrable lattice. Stud. Appl. Math. 125, 55–67 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wen, X.Y., Gao, Y.T.: N-soliton solutions and elastic interaction of the coupled lattice soliton equations for nonlinear waves. Appl. Math. Commun. 219, 99–107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Porsezian, K., Lakshmanan, M.: Discretised Hirota equation, equivalent spin chain and Backlund transformations. Inverse Prob. 5, L15–L19 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gu, C.H., He, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Scientific and Technical Publishers, Shanghai (2005)Google Scholar
  27. 27.
    Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  28. 28.
    Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of MathematicsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations