Nonlinear Dynamics

, Volume 84, Issue 3, pp 1259–1279 | Cite as

Cable’s mode interactions under vertical support motions: boundary resonant modulation

  • Tieding Guo
  • Houjun Kang
  • Lianhua Wang
  • Yueyu Zhao
Original Paper


Cable’s triad and two-to-one mode interactions excited by support motions are modeled and analyzed in a unified boundary modulation formulation. Based upon proper scaling and a boundary resonance concept, the small support motion is modeled as a nonzero boundary modulation term for cable’s reduced (slow) dynamics through attacking cable’s continuous dynamic equations directly by the multiple scale method. Boundary resonance coefficients, characterizing the boundary modulation effect, are derived analytically for both cable’s triad and two-to-one mode resonant dynamics. It is found that the boundary resonance coefficients depend on both cable’s boundary modal information and cable’s initial deformation/sag. Frequency response diagrams based on cable’s reduced models (modulation equations) are obtained, with stability and bifurcation determined. Finally, these approximate analytical results are verified by the numerical results through applying the finite-difference method directly to cable’s original partial differential equations.


Cable–support interaction Boundary resonant modulation Mode interaction Multiple scale method Boundary resonance coefficient 



This study is funded by Program for Supporting Young Investigator, Hunan University. And it is also supported by National Science Foundation of China under Grant Nos. 11502076 and 11572117. Interesting comments and criticism by the reviewers are also gratefully acknowledged.


  1. 1.
    Rega, G.: Nonlinear vibrations of suspended cables, part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)CrossRefGoogle Scholar
  2. 2.
    Ibrahim, R.A.: Nonlinear vibrations of suspended cables—part III: random excitation and interaction with fluid flow. Appl. Mech. Rev. 57, 515–549 (2005)CrossRefGoogle Scholar
  3. 3.
    Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. A 341, 299–315 (1974)CrossRefGoogle Scholar
  4. 4.
    Irvine, H.M.: Cable Structures. The MIT Press, Cambridge (1981)Google Scholar
  5. 5.
    Triantafyllou, M.S.: Dynamics of cables, towing cables, and mooring systems. Shock Vib. Dig. 23, 3–8 (1991)CrossRefGoogle Scholar
  6. 6.
    Hagedon, P., Schäfer, B.: On non-linear free vibrations of an elastic cables. Int. J. Non-Linear Mech. 15, 333–339 (1980)CrossRefGoogle Scholar
  7. 7.
    Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19, 39–52 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22, 497–509 (1987)CrossRefzbMATHGoogle Scholar
  9. 9.
    Benedettin, Fi, Rega, G., Vestroni, F.: Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica 21, 38–46 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rao, G.V., Iyengar, R.N.: Internal resonance and non-linear response of a cable under periodic excitation. J. Sound Vib. 149, 25–41 (1991)CrossRefGoogle Scholar
  11. 11.
    Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, C.L., Perkins, N.C.: Non-linear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3, 465–490 (1993)Google Scholar
  13. 13.
    Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: theoretical formulation and model validation. Nonlinear Dyn. 48, 231–252 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pakdemirli, M., Nayfeh, S.A., Nayfeh, A.H.: Analysis of one-to-one autoparametric resonances in cables: discretization versus direct treatment. Nonlinear Dyn. 8, 65–83 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lacarbonara, W., Rega, G., Nayfeh, A.H.: Resonant non-linear normal modes. Part I: analytical treatment for structural one dimensional systems. Int. J. Non-Linear Mech. 38, 851–871 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lacarbonara, W., Rega, G.: Resonat non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems. Int. J. Non-Linear Mech. 38, 873–887 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhao, Y.Y., Wang, L.H.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294, 1073–1093 (2006)CrossRefGoogle Scholar
  18. 18.
    Nayfeh, A.H.: Non-linear Interactions. Wiley-Inter Science, New York (2000)Google Scholar
  19. 19.
    Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rega, G., Luongo, A.: Natural vibrations of suspended cables with flexible supports. Comput. Struct. 12, 65–75 (1980)CrossRefzbMATHGoogle Scholar
  21. 21.
    Rega, G., Alaggio, R.: Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system. Int. J. Solids Struct. 38(10), 2049–2068 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Koh, C.G., Rong, Y.: Dynamic analysis of large displacement cable motion with experimental verification. J. Sound Vib. 272(1), 187–206 (2004)CrossRefGoogle Scholar
  23. 23.
    Berlioz, A., Lamarque, C.H.: Nonlinear vibrations of an inclined cable. ASME J. Vib. Acoust. 127, 315–323 (2005)CrossRefGoogle Scholar
  24. 24.
    Rega, G., Alaggio, R.: Experimental unfolding of the nonlinear dynamics of a cable-mass suspended system around a divergence-Hopf bifurcation. J. Sound Vib. 322(3), 581–611 (2009)CrossRefGoogle Scholar
  25. 25.
    Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)CrossRefGoogle Scholar
  26. 26.
    Cai, Y., Chen, S.S.: Dynamics of elastic cable under parametric and external resonances. J. Eng. Mech. 120, 1786–1802 (1993)CrossRefGoogle Scholar
  27. 27.
    Lilien, J.L., PintodaCosta, A.: Vibration amplitudes caused by parametric excitation of cable stayed structure. J. Sound Vib. 174, 69–90 (1994)CrossRefzbMATHGoogle Scholar
  28. 28.
    Pintoda Costa, A., Martins, J.A., Branco, F., Lilien, J.L.: Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. J. Eng. Mech 122, 613–622 (1996)CrossRefGoogle Scholar
  29. 29.
    Berlioz, A., Lamarque, C.H.: A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 279, 619–639 (2005)CrossRefGoogle Scholar
  30. 30.
    Georgakis, C.T., Taylor, C.A.: Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation. J. Sound Vib. 281, 537–564 (2005)CrossRefGoogle Scholar
  31. 31.
    Wang, L.H., Zhao, Y.Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327, 121–133 (2009)CrossRefGoogle Scholar
  32. 32.
    Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Macdonald, J.H.G.: Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vib. 318, 565–579 (2008)CrossRefGoogle Scholar
  33. 33.
    Macdonald, J.H.G., Dietz, M.S., Neild, S.A., Gonzalez-Buelga, A., Crewe, A.J., Wagg, D.J.: Generalized modal stability of inclined cables subjected to support excitations. J. Sound Vib. 329, 4515–4533 (2010)CrossRefGoogle Scholar
  34. 34.
    Kang, H.J., Zhao, Y.Y., Zhu, H.P.: In-plane non-linear dynamics of the stay cables. Nonlinear Dyn. 73, 1385–1398 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Warnitchai, P., Fujinob, Y., Susumpowc, T.: A non-linear dynamic model for cables and its application to cable-structure system. J. Sound Vib. 187, 695–712 (1995)CrossRefGoogle Scholar
  36. 36.
    Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    Lacarbonara, W.: Direct treatment and discretizations of non-linear spatially continuous systems. J. Sound Vib. 221, 849–866 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Nayfeh, A.H., Arafat, A.H., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Shaw, S.W., Pierre, C.: Normal modes of vibration for non-linear continuous systems. J. Sound Vib. 169, 319–347 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Gattulli, V., Lepidi, M.: Localization and veering in cable-stayed bridge dynamics. Comput. Struct. 85(21–22), 1661–1668 (2007)Google Scholar
  41. 41.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-Interscience, New York (1994)zbMATHGoogle Scholar
  42. 42.
    Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems–A Guide to XPP-AUTO for Researchers and Students. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  43. 43.
    Srinil, N., Rega, G.: Space-time numerical simulation and validation of analytical predictions for nonlinear forced dynamics of suspended cables. J. Sound Vib. 315, 394–413 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tieding Guo
    • 1
  • Houjun Kang
    • 1
  • Lianhua Wang
    • 1
  • Yueyu Zhao
    • 1
  1. 1.College of Civil EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations