Nonlinear Dynamics

, Volume 84, Issue 2, pp 1079–1091 | Cite as

Trajectory tracking sliding mode control of underactuated AUVs

  • Taha Elmokadem
  • Mohamed ZribiEmail author
  • Kamal Youcef-Toumi
Original Paper


This paper deals with the control of underactuated autonomous underwater vehicles (AUVs). AUVs are needed in many applications such as the exploration of oceans, scientific and military missions, etc. There are many challenges in the control of AUVs due to the complexity of the AUV model, the unmodelled dynamics, the uncertainties and the environmental disturbances. A trajectory tracking control scheme is proposed in this paper; this control scheme is designed using the sliding mode control technique in order to be robust against bounded disturbances. The control performance of an example AUV, using the proposed method, is evaluated through computer simulations. These simulation studies, which consider different reference trajectories, show that the proposed control scheme is robust under bounded disturbances.


Autonomous underwater vehicles AUV Underactuated  Trajectory tracking Sliding mode control 



We would like to recognize the financial support of the Kuwait Foundation for the Advancement of Science (KFAS) for the project KFAS 2013-5505-01.


  1. 1.
    Cristi, R., Papoulias, F.A., Healey, A.J.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J. Ocean. Eng. 15(3), 152–160 (1990)CrossRefGoogle Scholar
  2. 2.
    Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  3. 3.
    Wichlund, K., Srdalen, O.J., Egeland, O.: Control properties of underactuated vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 2009-2014. IEEE (1995)Google Scholar
  4. 4.
    Aguiar, A.P., Hespanha, J.P.: Position tracking of underactuated vehicles. In: Proceedings of the 2003 American Control Conference, vol. 3, pp. 1988-1993. IEEE (2003)Google Scholar
  5. 5.
    Wang, L., Jia, H.m., Zhang, L.j., Wang, H.b.: Horizontal tracking control for AUV based on nonlinear sliding mode. In: International Conference on Information and Automation (ICIA), pp. 460-463. IEEE (2012)Google Scholar
  6. 6.
    Ashrafiuon, H., Muske, K.R., McNinch, L.C., Soltan, R.A.: Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 55(11), 4004–4012 (2008)CrossRefGoogle Scholar
  7. 7.
    Yoerger, D.R., Slotine, J.J.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. 10(4), 462–470 (1985)CrossRefGoogle Scholar
  8. 8.
    Joe, H., Kim, M., Yu, S.C.: Second-order sliding mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014)CrossRefGoogle Scholar
  9. 9.
    Sahu, B.K., Subudhi, B.: Adaptive tracking control of an autonomous underwater vehicle. Int. J. Autom. Comput. 11(3), 299–307 (2014)CrossRefGoogle Scholar
  10. 10.
    McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive control for autonomous underwater vehicles. In: Proceedings of the 23rd national conference on Artificial intelligence-Volume 3, pp. 1319-1324 (2008)Google Scholar
  11. 11.
    Antonelli, G., Caccavale, F., Chiaverini, S., Fusco, G.: A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)CrossRefGoogle Scholar
  12. 12.
    Do, K., Pan, J., Jiang, Z.: Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Eng. 31(16), 1967–1997 (2004)CrossRefGoogle Scholar
  13. 13.
    Li, J.H., Lee, P.M.: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng. 32(17), 2165–2181 (2005)Google Scholar
  14. 14.
    Yuh, J.: Learning control for underwater robotic vehicles. IEEE Control Syst. Mag. 14(2), 39–46 (1994)CrossRefGoogle Scholar
  15. 15.
    Peng, Z., Wang, D., Wang, H., Wang, W.: Distributed coordinated tracking of multiple autonomous underwater vehicles. Nonlinear Dyn. 78(2), 1261–1276 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yuh, J.: A neural net controller for underwater robotic vehicles. IEEE J. Ocean. Eng. 15(3), 161–166 (1990)CrossRefGoogle Scholar
  18. 18.
    Fujii, T., Ura, T.: Development of motion control system for AUV using neural nets. In: Proceedings of the (1990) Symposium on Autonomous Underwater Vehicle Technology, pp. 81-86. IEEE (1990)Google Scholar
  19. 19.
    Khaled, N., Chalhoub, N.G.: A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73(1–2), 897–906 (2013)CrossRefGoogle Scholar
  20. 20.
    Wang, J.S., Lee, C.G.: Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans. Robot. Autom. 19(2), 283–295 (2003)CrossRefGoogle Scholar
  21. 21.
    Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)CrossRefGoogle Scholar
  22. 22.
    Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control 74(14), 1435–1446 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New York (2011)CrossRefGoogle Scholar
  25. 25.
    Fossen, T.I.: Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim (2002)Google Scholar
  26. 26.
    Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16(11), 1354–1363 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Taha Elmokadem
    • 1
  • Mohamed Zribi
    • 1
    Email author
  • Kamal Youcef-Toumi
    • 2
  1. 1.Electrical Engineering DepartmentKuwait UniversitySafatKuwait
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations