Nonlinear Dynamics

, Volume 84, Issue 1, pp 223–236 | Cite as

Mathematical framework for recursive model-based system design

  • Mohamed A. Mabrok
  • Saber Elsayed
  • Michael J. Ryan
Original Paper
  • 193 Downloads

Abstract

In this paper, we introduce a mathematical framework that allows the designer to consider more of the proposed ideas and options in conceptual design phase into the design process. The proposed model allows for dynamical relationship between the system’s high-level requirements and the detailed design parameters, where an optimization engine can optimize over the design parameters and variables for a given range in the requirement. This is done by proposing an input/output block structure named recursive design modular (RDM). The output of RDM is the functions that the system supposes to perform at particular level. The input of RDM is the design parameters that control the required behaviour through a set of mapping or transformation.

Keywords

Model-based system design Systems engineering Model-based system engineering 

References

  1. 1.
    Boland Jr, R.J.: The process and product of system design. Manag. Sci. 24(9), 887–898 (1978)CrossRefGoogle Scholar
  2. 2.
    Blanchard, B.S., Fabrycky, W.J., Fabrycky, W.J.: Systems Engineering and Analysis. Prentice Hall Englewood Cliffs, New Jersey (1990)Google Scholar
  3. 3.
    Kroll, E., Condoor, S., Jansson, D.: Innovative Conceptual Design: Theory and Application of Parameter Analysis. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  4. 4.
    Waldo, J.: On system design. In ACM SIGPLAN Notices, vol. 41, no. 10, pp. 467–480. ACM (2006)Google Scholar
  5. 5.
    Aronson, J., Liang, T., Turban, E.: Decision Support Systems and Intelligent Systems. Andi, Yoyakarta (2005)Google Scholar
  6. 6.
    Marston, M., Mistree, F.: A decision-based foundation for systems design: a conceptual exposition. In CIRP 1997 International Design Seminar Proceedings on Multimedia Technologies for Collaborative Design and Manufacturing, pp. 1–11. University of Southern California, Los Angeles, CA (1997)Google Scholar
  7. 7.
    Kalsi, M., Hacker, K., Lewis, K.: Decision Trade-Offs in Complex Systems Design Using a Conceptual Robustness Approach. In The Third World Congress of Structural and Multidisciplinary Optimization (1999)Google Scholar
  8. 8.
    Austin-Breneman, J., Honda, T., Yang, M.C.: A study of student design team behaviors in complex system design. J. Mech. Des. 134(12), 124504 (2012)CrossRefGoogle Scholar
  9. 9.
    Senge, P.M.: The fifth discipline. Meas. Bus. Excell. 1(3), 46–51 (1997)CrossRefGoogle Scholar
  10. 10.
    ISO/IEC 15288: Systems and Software Engineering System Life Cycle Processes (2008)Google Scholar
  11. 11.
    Leontief, W.: Input–Output Economics. Oxford University Press, Oxford (1986)Google Scholar
  12. 12.
    Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann, Burlington (2011)Google Scholar
  13. 13.
    Estefan, J.A.: Survey of Model-Based Systems Engineering (mbse) Methodologies. Jet Propulsion Laboratory California Institute of Technology Pasadena. California, USA (2008)Google Scholar
  14. 14.
    Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: an emerging approach for modern systems. IEEE Trans. Syst. Man Cybern. Part. C Appl. Rev. 42(1), 101–111 (2012)CrossRefGoogle Scholar
  15. 15.
    Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan Kaufmann, Burlington (2011)MATHGoogle Scholar
  16. 16.
    Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm; with CD-ROM, vol. 1. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Tiller, M.: Introduction to Physical Modeling with Modelica. Springer, Berlin (2001)CrossRefGoogle Scholar
  18. 18.
    Fitzgerald, J., Larsen, P.G., Pierce, K., Verhoef, M., Wolff, S.: Collaborative modelling and co-simulation in the development of dependable embedded systems. In Integrated Formal Methods. pp. 12–26. Springer, Berlin (2010)Google Scholar
  19. 19.
    Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity-the ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)CrossRefGoogle Scholar
  20. 20.
    Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II. Ptolemy. org (2014)Google Scholar
  21. 21.
    Suh, N.P., Sekimoto, S.: Design of thinking design machine. CIRP Ann. Manuf. Technol. 39(1), 145–148 (1990)CrossRefGoogle Scholar
  22. 22.
    Suh, N.: Axiomatic Design: Advances and Applications. MIT-Pappalardo Series in Mechanical Engineering. Oxford University Press, Oxford (2001)Google Scholar
  23. 23.
    Wymore, A.: Model-Based Systems Engineering ser. Systems Engineering. Taylor & Francis, New York (1993)Google Scholar
  24. 24.
    Kulak, O., Cebi, S., Kahraman, C.: Applications of axiomatic design principles: a literature review. Expert Syst. Appl. 37(9), 6705–6717 (2010)CrossRefGoogle Scholar
  25. 25.
    Bae, S., Lee, J.M., Chu, C.N.: Axiomatic design of automotive suspension systems. CIRP Ann. Manuf. Technol. 51(1), 115–118 (2002)CrossRefGoogle Scholar
  26. 26.
    Thielman, J., Ge, P.: Applying axiomatic design theory to the evaluation and optimization of large-scale engineering systems. J. Eng. Des. 17(1), 1–16 (2006)CrossRefGoogle Scholar
  27. 27.
    Helander, M.G.: Using design equations to identify sources of complexity in human-machine interaction. Theor. Issues Ergon. Sci. 8(2), 123–146 (2007)CrossRefGoogle Scholar
  28. 28.
    Kim, D.-E., Chung, K.-H., Cha, K.-H.: Tribological design methods for minimum surface damage of hdd slider. Tribol. Int. 36(4), 467–473 (2003)CrossRefGoogle Scholar
  29. 29.
    Kulak, O., Kahraman, C.: Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Inf. Sci. 170(2), 191–210 (2005)CrossRefMATHGoogle Scholar
  30. 30.
    Kulak, O., Kahraman, C.: Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. Int. J. Prod. Econ. 95(3), 415–424 (2005)CrossRefGoogle Scholar
  31. 31.
    Cebi, S., Kahraman, C.: Extension of axiomatic design principles under fuzzy environment. Expert Syst. Appl. 37(3), 2682–2689 (2010)CrossRefGoogle Scholar
  32. 32.
    Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept of reference architectures. Syst. Eng. 13(1), 14–27 (2010)Google Scholar
  33. 33.
    Migdalas, A., Pardalos, P., Värbrand, P.: Multilevel Optimization: Algorithms and Applications. Nonconvex Optimization and Its Applications. Springer, Berlin (1998)CrossRefMATHGoogle Scholar
  34. 34.
    Siljak, D., Sundareshan, M.: A multilevel optimization of large-scale dynamic systems. IEEE Transactions on Automatic Control 21(1), 79–84 (1976)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Frandi, E., Papini, A.: Coordinate search algorithms in multilevel optimization. Optim. Methods Softw. 29(5), 1020–1041 (2014)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Pettersson, H., Rodiouchkina, M., Micklow, G., et al.: Multidisciplinary Design Optimization for Automotive Design Systems. SAE Technical Paper. Tech. Rep. (2015)Google Scholar
  37. 37.
    Sarker, R., Elsayed, S., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)CrossRefGoogle Scholar
  38. 38.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mohamed A. Mabrok
    • 1
    • 3
  • Saber Elsayed
    • 1
    • 2
  • Michael J. Ryan
    • 1
  1. 1.School of Engineering and Information TechnologyUniversity of New South Wales, Australian Defence Force AcademyCanberraAustralia
  2. 2.Faculty of Computers and InformaticsZagazig UniversityZagazigEgypt
  3. 3.Mathematics Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations