Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 739–749 | Cite as

Cluster synchronization in nonlinear complex networks under sliding mode control

Original Paper

Abstract

This paper investigates the cluster synchronization for network of nonlinear systems via differential mean value theorem method and sliding mode control strategy. Because of the existence of the nonlinear dynamics, the differential mean value theorem method is used to transform the nonlinear error complex network system into a linear parameter-varying system. Since the robustness to the uncertainties of the sliding mode, we can deal with the linear parameter-varying system which contains the time-varying mismatched uncertainties by applying the sliding mode control strategy through the equivalent transformation. In addition, appropriate linear matrix inequality stability condition by the Lyapunov method is derived such that each subsystem in the new sliding mode is completely invariant to both matched and mismatched uncertainties. Finally, simulation example is shown to illustrate the effectiveness of the proposed method.

Keywords

Cluster synchronization Differential mean value theorem Time-varying mismatched uncertainties Sliding mode control 

References

  1. 1.
    Huberman, B.A., Adamic, L.A.: Internet: growth dynamics of the world-wide web. Nature 401, 131–131 (1999)Google Scholar
  2. 2.
    Bolognani, S., Zampieri, S.: A distributed control strategy for reactive power compensation in smart microgrids. IEEE Trans. Autom. Control 58, 2818–2833 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012)Google Scholar
  4. 4.
    Xia, W., Cao, M.: Clustering in diffusively coupled networks. Automatica 47, 2395–2405 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Qin, J., Gao, H., Zheng, W.: Exponential synchronization of complex networks of linear system and nonlinear oscillators: a unified analysis. IEEE Trans. Neural Netw. Learn. Syst. (2014). doi:10.1109/TNNLS.2014.2316245
  6. 6.
    Li, J., Zhang, Q., Yu, H.: Real-time guaranteed cost control of MIMO networked control systems with packet disordering. J. Process Control 21, 967–975 (2011)CrossRefGoogle Scholar
  7. 7.
    Maurizio, P., Mario, D.B.: Criteria for global pinning-controllability of complex networks. Automatica 44, 3100–3106 (2008)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cao, Y., Ren, W.: Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. Automatica 50, 2648–2656 (2014)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Kurths, J., Moreno, Y., Zhou, C., Arenas, A., Guilera, A.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Tang, Y., Qian, F., Gao, H., Kurths, J.: Synchronization in Complex networks and its application—a survey of recent advances and challenges. Ann. Rev. Control (2014). doi:10.1016/j.arcontrol.2014.09.003
  11. 11.
    Lü, L., Li, C., Wang, W., Sun, Y., Wang, Y., Sun, A.: Study on spatiotemporal chaos synchronization among complex networks with diverse structures. Nonlinear Dyn. 77, 145–151 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lü, L., Li, Y., Fan, X., Lv, N.: Outer synchronization between uncertain complex networks based on backstepping design. Nonlinear Dyn. 73, 767–773 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Wu, Z., Fu, X.: Complex projective synchronization in drive-response networks coupled with complex-variable chaotic systems. Nonlinear Dyn. 72, 9–15 (2013)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Shi, H., Sun, Y., Miao, L.: Generation of lag outer synchronization of complex networks with noise coupling. Nonlinear Dyn. 79, 1131–1140 (2015)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Sun, Y., Shi, H., Emmanuel, A., Meng, Q.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dyn. 76, 519–528 (2014)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Uhlhaas, P., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–168 (2006)CrossRefGoogle Scholar
  17. 17.
    Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012)CrossRefGoogle Scholar
  18. 18.
    Su, H., Wang, X.: Pinning Control of Complex Networked systems. Springer, New York (2012)MATHGoogle Scholar
  19. 19.
    Lu, R., Yu, W., Lü, J., Xu, A.: Synchronization on complex networks of networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 2110–2118 (2014)CrossRefGoogle Scholar
  20. 20.
    Tsai, Y., Huynh, V., Lee, C., Kuo, K.: AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Springer, Berlin, Heidelberg (2013)Google Scholar
  21. 21.
    Katalin, M., Gabor, S.: A model structure-driven hierarchical decentralized stabilizing control structure for process networks. J. Process Control 24, 1358–1370 (2014)CrossRefGoogle Scholar
  22. 22.
    Johannes, S., Romeo, O., Alessandro, A., Jorg, R., Tevfik, S.: Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50, 2457–2469 (2014)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control: Theory and Applications. Taylor and Francis Ltd, London (1998)MATHGoogle Scholar
  24. 24.
    Ahmad, T.A., Zhu, Q.: Advances and Applications in Sliding Mode Control Systems. Springer, Berlin (2015)MATHGoogle Scholar
  25. 25.
    Lee, H., Utkin, V.I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31, 179–188 (2007)CrossRefGoogle Scholar
  26. 26.
    Chan, M., Tao, C., Lee, T.: Sliding mode controller for linear systems with mismatched time-varying uncertainties. J. Franklin Inst. 337, 105–115 (2000)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Mohd, A., Ho, P.: Adaptive sliding mode control with neural network based hybrid models. J. Process Control 2, 157–176 (2004)Google Scholar
  28. 28.
    Ali, Z., Mohamed, B.: A unified \(H_{\infty }\) adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities. Syst. Control Lett. 58, 282–288 (2009)CrossRefMATHGoogle Scholar
  29. 29.
    Lu, Y., Huang, B.: Robust multiple-model LPV approach to nonlinear process identification using mixture \(t\) distributions. J. Process Control 24, 1472–1488 (2014)CrossRefGoogle Scholar
  30. 30.
    Glaria, T., Sbarbaro, D., Johansen, T.: Observer design for linear processes model with implicit nonlinear output map. J. Process Control 22, 1647–1654 (2010)CrossRefGoogle Scholar
  31. 31.
    Jin, X., Huang, B., David, S.S.: Multiple model LPV approach to nonlinear process identification with EM algorithm. J. Process Control 21, 182–193 (2011)CrossRefGoogle Scholar
  32. 32.
    Yu, C., Qin, J., Gao, H.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50, 2341–2349 (2014)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Ali, Z., Mohamed, B., Bara, G.I.: Observer design for nonlinear systems: an approach based on the differential mean value theorem. In: Proceedings of the 44th IEEE conference on decision and control and the European control conference (2005)Google Scholar
  34. 34.
    Boukas, E.: Control of Singular Systems with Random Abrupt Changes. Springer, Berlin, Heidelberg (2008)MATHGoogle Scholar
  35. 35.
    Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)CrossRefGoogle Scholar
  36. 36.
    Qin, H., Ma, J., Jin, W., Wang, C.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of System ScienceNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Networked Control SystemsChinese Academy of SciencesBeijingChina

Personalised recommendations