Advertisement

Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 419–432 | Cite as

Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays

  • G. Velmurugan
  • R. Rakkiyappan
Original Paper

Abstract

In this paper, we study the hybrid projective synchronization problem for a class of fractional-order memristor-based neural networks with time delays. First, we address the basic ideas of fractional-order memristor-based neural networks (FMNNs) with hub structure and time delays. After that we derive the response system can be synchronized from the corresponding drive system, that is, the response system can be synchronized with the projection of the drive system generated through a design scaling matrix which is known as hybrid projective synchronization. By applying the Filippovs solutions, differential inclusion theory, stability theorem of linear fractional-order systems with multiple time delays and employing suitable linear feedback control law, some new sufficient conditions are derived to guaranteeing the projective synchronization of addressed FMNNs with hub structure and time delays. The analysis in this paper is based on the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, a numerical example is presented to show the usefulness of our theoretical results.

Keywords

Memristor-based neural networks Fractional-order Hybrid projective synchronization Time delays 

References

  1. 1.
    Driscoll, T., Quinn, J., Klein, S., Kim, H.T., Kim, B.J., Pershin, Y.V., Ventra, M.D., Basov, D.N.: Memristive adaptive filters. Appl. Phys. Lett. 97, 093502 (2010)CrossRefGoogle Scholar
  2. 2.
    Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  3. 3.
    Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  4. 4.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  5. 5.
    Tour, J.M., He, T.: The fourth element. Nature 453, 42–43 (2008)CrossRefGoogle Scholar
  6. 6.
    Wu, A., Zeng, Z.: Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 36, 1–10 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phy. Lett. A 375, 1661–1665 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Rakkiyappan, R., Velmurugan, G., Cao, J.: Stability analysis of memristor-based fractional-order neural networks with different memductance functions. Cogn. Neurodyn. 9, 145–177 (2015)Google Scholar
  9. 9.
    Qi, J., Li, C., Huang, T.: Stability of delayed memristive neural networks with time-varying impulses. Cogn. Neurodyn. 8, 429–436 (2014)CrossRefGoogle Scholar
  10. 10.
    Li, X., Rakkiyappan, R., Velmurugan, G.: Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf. Sci. 294, 645–665 (2015)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78, 2823–2836 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Rakkiyappan, R., Cao, J., Velmurugan, G.: Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 84–97 (2015)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Yang, X., Cao, J., Yu, W.: Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cogn. Neurodyn. 8, 239–249 (2014)CrossRefGoogle Scholar
  14. 14.
    Wu, A., Wen, S., Zeng, Z.: Synchronization control of a class of memristor-based recurrent neural networks. Inf. Sci. 183, 106–116 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Wu, A., Zeng, Z.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18, 373–385 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Li, N., Cao, J.: New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw. 61, 1–9 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Wu, H., Li, R., Yao, R., Zhang, X.: Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays. Neurocomputing 149, 667–676 (2015)CrossRefGoogle Scholar
  18. 18.
    Wang, L., Shen, Y., Yin, Q., Zhang, G.: Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 2033–2042 (2015)Google Scholar
  19. 19.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  20. 20.
    Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 294–298 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)zbMATHGoogle Scholar
  22. 22.
    Petras, I.: A note on the fractional-order cellular neural networks. In: International joint conference on neural networks, pp. 1021–1024 (2006)Google Scholar
  23. 23.
    Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Shen, J., Lam, J.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50, 547–551 (2014)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Lundstrom, B., Higgs, M., Spain, W., Fairhall, A.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008)CrossRefGoogle Scholar
  27. 27.
    Boroomand, A., Menhaj, M.: Fractional-order Hopfield neural networks. Lect. Notes Comput. Sci. 5506, 883–890 (2009)CrossRefGoogle Scholar
  28. 28.
    Chen, L., Chai, Y., Wu, R., Ma, T., Zhai, H.: Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111, 190–194 (2013)CrossRefGoogle Scholar
  29. 29.
    Wu, R.C., Hei, X.D., Chen, L.P.: Finite-time stability of fractional-order neural networks with delay. Commun. Theor. Phys. 60, 189–193 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Wang, H., Yu, Y., Wen, G.: Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 55, 98–109 (2014)CrossRefzbMATHGoogle Scholar
  31. 31.
    Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, H., Yu, Y., Wen, G., Zhang, S.: Stability analysis of fractional-order neural networks with time delay. Neural Process. Lett. (2014). doi: 10.1007/s11063-014-9368-3
  33. 33.
    Velmurugan, G., Rakkiyappan, R.: Hybrid projective synchronization of fractional-order neural networks with time delays. Mathematical Analysis and its Applications. In: Proceedings in Mathematics & Statistics, Springer, p. 143. doi: 10.1007/978-81-322-2485-3
  34. 34.
    Zhang, Z., Huang, J., Liu, Z., Sun, M.: Boundary stabilization of a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback. Abstr. Appl. Anal. 2014, Article ID: 102594, pp. 1–14 (2014)Google Scholar
  35. 35.
    Zhang, Z., Liu, Z., Miao, X., Chen, Y.: Stability analysis of heat flow with boundary time-varying delay effect. Nonlinear Anal. Theor. 73, 1878–1889 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Perora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Zhu, H., He, Z.S., Zhou, S.B.: Lag synchronization of the fractional-order system via nonlinear observer. Int. J. Mod. Phys. B 25, 3951–3964 (2011)CrossRefzbMATHGoogle Scholar
  38. 38.
    Taghvafard, H., Erjaee, G.H.: Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079–4088 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Wang, B., Jian, J., Yu, H.: Adaptive synchronization of fractional-order memristor-based Chua’s system. Syst. Sci. Control Eng. 2, 291–296 (2014)CrossRefGoogle Scholar
  40. 40.
    Wang, X.Y., He, Y.J.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372, 435–441 (2008)CrossRefzbMATHGoogle Scholar
  41. 41.
    Kuntanapreeda, S.: Robust synchronization of fractional-order unified chaotic systems via linear control. Comput. Math. Appl. 63, 183–190 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3024–3045 (1999)CrossRefGoogle Scholar
  43. 43.
    Chee, C. Y., Xu, D.: Chaos-based M-nary digital communication technique using controller projective synchronization. In: IEE Proceedings G (Circuits, Devices and Systems) 153, pp. 357–360 (2006)Google Scholar
  44. 44.
    Wang, S., Yu, Y., Wen, G.: Hybrid projective synchronization of time-delayed fractional-order chaotic systems. Nonlinear Anal. Hybrid Syst. 11, 129–138 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Wang, S., Yu, Y.G., Diao, M.: Hybrid projective synchronization of chaotic fractional order systems with different dimensions. Phys. A 389, 4981–4988 (2010)CrossRefGoogle Scholar
  47. 47.
    Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal. Real World Appl. 12, 811–816 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Wang, X.Y., Zhang, X.P., Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69, 511–517 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Chen, J., Zeng, Z., Jiang, P.: Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)CrossRefzbMATHGoogle Scholar
  50. 50.
    Bao, H.B., Cao, J.: Projective synchronization of fractional-order memristor-based neural networks. Neural Netw. 63, 1–9 (2015)CrossRefzbMATHGoogle Scholar
  51. 51.
    Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1, 1–8 (2011)zbMATHGoogle Scholar
  52. 52.
    Aubin, J., Frankowsaka, H.: Set-Valued Analysis. Springer, New York (2009)CrossRefGoogle Scholar
  53. 53.
    Filippov, A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. 93, 99–128 (1960)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of MathematicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations