Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 231–252 | Cite as

Order and chaos near equilibrium points in the potential of rotating highly irregular-shaped celestial bodies

  • Yu Jiang
  • Hexi Baoyin
  • Xianyu Wang
  • Yang Yu
  • Hengnian Li
  • Chao Peng
  • Zhibin Zhang
Original Paper

Abstract

The order and chaos of the motion near equilibrium points in the potential of a rotating highly irregular-shaped celestial body are investigated from point of view of the dynamical system theory. The positions of the non-degenerate equilibrium points vary continuously when the parameter changes. The topological structures in the vicinity of equilibrium points are classified into several different cases. Bifurcations at equilibrium points and the topological transfers between different cases for equilibrium points are also discussed. The conclusions can be applied to all kinds of rotating celestial bodies, simple-shaped or highly irregular-shaped, including asteroids, comets, planets, and satellites of planets to help one to understand the dynamical behaviors around them. Applications to asteroids 216 Kleopatra, 2063 Bacchus, and 25143 Itokawa are significant and interesting: Eigenvalues affiliated to the equilibrium points for the asteroid 216 Kleopatra move and always belong to the same topological cases, while eigenvalues affiliated to two different equilibrium points for the asteroid 2063 Bacchus and 25143 Itokawa move through the resonant cases of equilibrium points, and the collision of eigenvalues in the complex plane occurs. Poincaré sections in the potential of the asteroid 216 Kleopatra show the chaos behaviors of the orbits in large scale.

Keywords

Irregular-shaped celestial bodies Asteroid Bifurcations Chaos Equilibrium points 

References

  1. 1.
    Elipe, A., Riaguas, A.: Nonlinear stability under a logarithmic gravity field. Int. Math. J. 3, 435–453 (2003)MathSciNetMATHGoogle Scholar
  2. 2.
    Riaguas, A., Elipe, A., Lara, M.: Periodic orbits around a massive straight segment. Celest. Mech. Dyn. Astron. 73(1/4), 169–178 (1999)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Riaguas, A., Elipe, A., López-Moratalla, T.: Non-linear stability of the equilibria in the gravity field of a finite straight segment. Celest. Mech. Dyn. Astron. 81(3), 235–248 (2001)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Arribas, A., Elipe, A.: Non-integrability of the motion of a particle around a massive straight segment. Phys. Lett. A 281, 142–148 (2001)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Elipe, A., Lara, M.: A simple model for the chaotic motion around (433) Eros. J. Astron. Sci. 51(4), 391–404 (2003)MathSciNetGoogle Scholar
  6. 6.
    Romero, S.G., Palacián, J.F., Yanguas, P.: The invariant manifolds of a finite straight segment. Monografías de la Real Academia de Ciencias de Zaragoza 25, 137–148 (2004)MathSciNetGoogle Scholar
  7. 7.
    Linder, J.F., Lynn, J., King, F.W., et al.: Order and chaos in the rotation and revolution of a line segment and a point. Phys. Rev. E 81, 036208 (2010)CrossRefGoogle Scholar
  8. 8.
    Najid, N.E., Elourabi, E.H., Zegoumou, M.: Potential generated by a massive inhomogeneous straight segment. Res. Astron. Astrophys. 11(3), 345–352 (2011)CrossRefGoogle Scholar
  9. 9.
    Lass, H., Blitzer, L.: The gravitational potential due to uniform disks and rings. Celest. Mech. 30(3), 225–228 (1983)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Broucke, R.A., Elipe, A.: The dynamics of orbits in a potential field of a solid circular ring. Regul. Chaotic Dyn. 10(2), 129–143 (2005)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Najid, N.E., Zegoumou, M., Elourabi, E.H.: Dynamical behavior in the vicinity of a circular anisotropic ring. Open. Astron. J. 5, 54–60 (2012)CrossRefGoogle Scholar
  12. 12.
    Zeng, X., Jiang, F., Li, J., et al.: Study on the connection between the rotating mass dipole and natural elongated bodies. Astrophys. Space Sci. 1, 29–42 (2015)CrossRefGoogle Scholar
  13. 13.
    Eckhardt, D.H., Pestaña, J.L.G.: Technique for modeling the gravitational field of a galactic disk. Astrophys. J. 572(2), 135–137 (2002)CrossRefGoogle Scholar
  14. 14.
    Alberti, A., Vidal, C.: Dynamics of a particle in a gravitational field of a homogeneous annulus disk. Celest. Mech. Dyn. Astron. 98(2), 75–93 (2007)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Fukushima, T.: Precise computation of acceleration due to uniform ring or disk. Celest. Mech. Dyn. Astron. 108(4), 339–356 (2010)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Blesa, F.: Periodic orbits around simple shaped bodies. Monogr. Semin. Mat. García Galdeano 33, 67–74 (2006)Google Scholar
  17. 17.
    Liu, X., Baoyin, H., Ma, X.: Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube. Astrophys. Space Sci. 333, 409–418 (2011)CrossRefMATHGoogle Scholar
  18. 18.
    Liu, X., Baoyin, H., Ma, X.: Periodic orbits in the gravity field of a fixed homogeneous cube. Astrophys. Space Sci. 334, 357–364 (2011)CrossRefMATHGoogle Scholar
  19. 19.
    Liu, X., Baoyin, H., Ma, X.: Dynamics of surface motion on a rotating massive homogeneous body. Sci. China-Phys. Mech. Astron. 56, 818–829 (2013)CrossRefGoogle Scholar
  20. 20.
    Chappell, J.M., Chappell, M.J., Iqbal, A., et al.: The gravity field of a cube. Phys. Int. 3, 50–57 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, X., Qiao, D., Cui, P.: The equilibria and periodic orbits around a dumbbell-shaped body. Astrophys. Space Sci. 348, 417–426 (2013)CrossRefGoogle Scholar
  22. 22.
    Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59(3), 253–278 (1994)CrossRefMATHGoogle Scholar
  23. 23.
    Mondelo, J.M., Broschart, S.B., Villac, B.F.: Dynamical Analysis of 1: 1 Resonances near Asteroids: Application to Vesta. Proceedings of the 2010 AIAA/AAS Astrodynamics Specialists Conference, August 2–5, Toronto, Ontario (2010)Google Scholar
  24. 24.
    Yu, Y., Baoyin, H.: Orbital dynamics in the vicinity of asteroid 216 Kleopatra. Astron. J. 143(3), 62–70 (2012)CrossRefGoogle Scholar
  25. 25.
    Yu, Y., Baoyin, H.: Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 427(1), 872–881 (2012)CrossRefGoogle Scholar
  26. 26.
    Yu, Y., Baoyin, H.: Resonant orbits in the vicinity of asteroid 216 Kleopatra. Astrophys. Space Sci. 343(1), 75–82 (2013)CrossRefGoogle Scholar
  27. 27.
    Jiang, Y., Baoyin, H.: Orbital mechanics near a rotating asteroid. J. Astr. Astron. 35, 17–38 (2014)CrossRefGoogle Scholar
  28. 28.
    Scheeres, D.J., Williams, B.G., Miller, J.K.: Evaluation of the dynamic environment of an asteroid: applications to 433 Eros. J. Guid. Control Dyn. 23(3), 466–475 (2000)CrossRefGoogle Scholar
  29. 29.
    Scheeres, D.J.: The orbital dynamics environment of 433 Eros. Ann. Arbor 1001, 1–6 (2002)Google Scholar
  30. 30.
    Scheeres, D.J.: Orbital mechanics about small bodies. Acta. Astronaut. 7, 1–14 (2012)CrossRefGoogle Scholar
  31. 31.
    Jiang, Y., Baoyin, H., Li, J., et al.: Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophys. Space Sci. 349, 83–106 (2014)CrossRefGoogle Scholar
  32. 32.
    Scheeres, D.J., Ostro, S.J., Hudson, R.S., et al.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132(1), 53–79 (1998)CrossRefGoogle Scholar
  33. 33.
    Scheeres, D.J., Ostro, S.J., Hudson, R.S., Werner, R.A.: Orbits close to asteroid 4769 Castalia. Icarus 121, 67–87 (1996)CrossRefGoogle Scholar
  34. 34.
    Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1997)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Takahashi, Y., Scheeres, D.J., Werner, R.A.: Surface gravity fields for asteroids and comets. J. Guid. Control. Dyn. 36(2), 362–374 (2013)CrossRefGoogle Scholar
  36. 36.
    Jiang, Y., Yu, Y., Baoyin, H.: Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies. Nonlinear Dyn. 81(1–2), 119–140 (2015)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Scheeres, D.J., Broschart, S., Ostro, S.J., et al.: The dynamical environment about Asteroid 25143 Itokawa. In: Proceedings of the Twenty-Fourth International Symposium on Space Technology and Science, pp. 456–461 (2004)Google Scholar
  38. 38.
    Scheeres, D.J., Broschart, S., Ostro, S.J., et al.: The dynamical environment about Asteroid 25143 Itokawa: target of the Hayabusa Mission. Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2004)Google Scholar
  39. 39.
    Galán, J., Munoz-Almaraz, F.J., Freire, E., et al.: Stability and bifurcations of the figure-8 solution of the three-body problem. Phys. Rev. Lett. 88(24), 241101 (2002)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Taylor, P.A., Margot, J.L., Vokrouhlický, D., et al.: Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect. Science 316(5822), 274–277 (2007)CrossRefGoogle Scholar
  41. 41.
    Oberc, P.: Electrostatic and rotational ejection of dust particles from a disintegrating cometary aggregate. Planet. Space Sci. 45(2), 221–228 (1997)CrossRefGoogle Scholar
  42. 42.
    Tardivel, S., Scheeres, D.J.: Contact motion on surface of asteroid. J. Spacecr. Rockets 51(6), 1857–1871 (2014)CrossRefGoogle Scholar
  43. 43.
    Asphaug, S.J., Ostro, R.S., Hudson, D.J.: Disruption of kilometer-sized asteroids by energetic collisions. Nature 393, 437–440 (1998)CrossRefGoogle Scholar
  44. 44.
    Hirabayashi, M., Scheeres, D.J.: Analysis of asteroid (216) Kleopatra using dynamical and structural constraints. Astrophys. J. 780, 160 (2014)CrossRefGoogle Scholar
  45. 45.
    Curtis, W.D., Miller, F.R.: Differential Manifolds and Theoretical Physics. Academic Press, London (1985)MATHGoogle Scholar
  46. 46.
    Weinstein, A.: Normal modes for nonlinear Hamiltonian systems. Invent. Math. 20(1), 47–57 (1973)CrossRefMathSciNetMATHGoogle Scholar
  47. 47.
    Moser, J.: Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure. Appl. Math. 29(6), 727–747 (1976)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Anishchenko, V.S., Astakhov, V., Neiman, A., et al.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Springer, Berlin (2007)MATHGoogle Scholar
  49. 49.
    Neese, C.: Small Body Radar Shape Models V2.0. EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0, NASA Planetary Data System (2004)Google Scholar
  50. 50.
    Wang, X., Jiang, Y., Gong, S.: Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies. Astrophys. Space Sci. 353, 105–121 (2014)CrossRefGoogle Scholar
  51. 51.
    Hartmann, W.K.: The shape of Kleopatra. Science 288(5467), 820–821 (2000)CrossRefGoogle Scholar
  52. 52.
    Ostro, S.J., Hudson, R.S., Nolan, M.: Radar observations of asteroid 216 Kleopatra. Science 288(5467), 836–839 (2000)CrossRefGoogle Scholar
  53. 53.
    Descamps, P., Marchis, F., Berthier, J.: Triplicity and physical characteristics of Asteroid (216) Kleopatra. Icarus 211(2), 1022–1033 (2011)CrossRefGoogle Scholar
  54. 54.
    Pravec, P., Wolf, M., Šarounová, L.: Lightcurves of 26 near-Earth asteroids. Icarus 136(1), 124–153 (1998)CrossRefGoogle Scholar
  55. 55.
    Benner, L.A.M., Hudson, R.S., Ostro, S.J., et al.: Radar observations of asteroid 2063 Bacchus. Icarus 139(2), 309–327 (1999)CrossRefGoogle Scholar
  56. 56.
    Müller, T.G., Sekiguchi, T., Kaasalainen, M., et al.: Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa. Astron. Astrophys. 443(1), 347–355 (2005)CrossRefGoogle Scholar
  57. 57.
    Hiroi, T., Abe, M., Kitazato, K., et al.: Developing space weathering on the asteroid 25143 Itokawa. Nature 443(7107), 56–58 (2006)CrossRefGoogle Scholar
  58. 58.
    Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O.S., et al.: Mass and local topography measurements of Itokawa by Hayabusa. Science 312(5778), 1344–1347 (2006)Google Scholar
  59. 59.
    Fujiwara, A., Kawaguchi, J., Yeomans, D.K., et al.: The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312(5778), 1330–1334 (2006)Google Scholar
  60. 60.
    Demura, H., Kobayashi, S., Nemoto, E., et al.: Pole and global shape of 25143 Itokawa. Science 312(5778), 1347–1349 (2006)CrossRefGoogle Scholar
  61. 61.
    Saito, J., Miyamoto, H., Nakamura, R., et al.: Detailed Images of Asteroid 25143 Itokawa from Hayabusa. Science 312(5778), 1341–1344 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yu Jiang
    • 1
    • 2
  • Hexi Baoyin
    • 2
  • Xianyu Wang
    • 2
  • Yang Yu
    • 3
  • Hengnian Li
    • 1
  • Chao Peng
    • 4
  • Zhibin Zhang
    • 1
  1. 1.State Key Laboratory of Astronautic DynamicsXi’an Satellite Control CenterXi’anChina
  2. 2.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  3. 3.Lagrange LaboratoryUniversity of Nice Sophia Antipolis, CNRS, Observatoire de la Côte d’AzurNice Cedex 4France
  4. 4.Technology and Engineering Center for Space UtilizationChinese Academy of SciencesBeijingChina

Personalised recommendations