Nonlinear Dynamics

, Volume 82, Issue 4, pp 1879–1892 | Cite as

FPGA realization of a chaotic communication system applied to image processing

  • E. Tlelo-Cuautle
  • V. H. Carbajal-Gomez
  • P. J. Obeso-Rodelo
  • J. J. Rangel-Magdaleno
  • J. C. Núñez-Pérez
Original Paper


The hardware realization of a chaotic communication system from the description of continuous-time multi-scroll chaotic oscillators is introduced herein by using field-programmable gate arrays (FPGA). That way, two multi-scroll chaotic oscillators generating 2 and 6 scrolls are synchronized by applying Hamiltonian forms and observer approach. The synchronized master-slave topology is used to implement a secure communication system by adding chaos to an image at the transmission stage and by subtracting chaos at the recover stage. The FPGA realization begins by applying numerical methods to solve the system of equations describing the whole chaotic communication system. Further, the replacement of multipliers by single constant multiplication blocks reduces the use of hardware resources and accelerates the processing time as well. Using chaotic oscillators with 2 and 6 scrolls, three kinds of images are processed: one in black and white and two in gray tones. Finally, the experimental results confirm the appropriateness on realizing chaotic communication systems for image processing by using FPGAs.


FPGA Synchronization Hamiltonian forms Multi-scroll chaotic oscillator Single constant multiplication block Numerical methods Computer arithmetic 



This work is partially supported by CONACyT/Mexico under projects 237991 and 136056.


  1. 1.
    Posadas-Castillo, C., Garza-Gonzalez, E., Diaz-Romero, D.A., Alcorta-Garcia, E., Cruz-Hernandez, C.: Synchronization of irregular complex networks with chaotic oscillators: Hamiltonian systems approach. J. Appl. Res. Technol. 12(4), 782–791 (2014)Google Scholar
  2. 2.
    Tlelo-Cuautle, E., Rangel-Magdaleno, J.J., Pano-Azucena, A.D., Obeso-Rodelo, P.J., Nuñez-Perez, J.C.: FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(3), 66–80 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mangeot, J.P., Launay, F., Coirault, P.: Design and FPGA-realization of a self-synchronizing chaotic decoder in the presence of noise. Commun. Nonlinear Sci. Numer. Simul. 17(2), 882–892 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aguirre-Hernandez, B., Campos-Canton, E., Lopez-Renteria, J.A., Diaz-Gonzalez, E.C.: A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems. Chaos Solit. Fractals 71, 100–106 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    de la Fraga, L.G., Tlelo-Cuautle, E.: Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators. Nonlinear Dyn. 76(2), 1503–1515 (2014)CrossRefGoogle Scholar
  6. 6.
    Lü, J., Chen, G.: Generating multi-scroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16(4), 775–858 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20, 64–73 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Muñoz-Pacheco, J.M., et al.: Synchronization of PWL function-based 2D and 3D multi scroll chaotic systems. Nonlinear Dyn. 70(2), 1633–1643 (2012)CrossRefGoogle Scholar
  9. 9.
    Ortega-Torres, E., Sanchez-Lopez, C., Mendoza-Lopez, J.: Frequency behavior of saturated nonlinear function series based on opamps. Rev. Mex. Fis. 59(6), 504–510 (2013)MathSciNetGoogle Scholar
  10. 10.
    Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Trejo-Guerra, R., Muñoz-Pacheco, J.M.: Simulating the synchronization of multi-scroll chaotic oscillators. IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1773–1776 (2013)Google Scholar
  11. 11.
    Kanso, A., Ghebleh, M.: An efficient and robust image encryption scheme for medical applications. Commun. Nonlinear Sci. Numer. Simul. 24, 98–116 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotics synchronization phenomena. Signal Process. 93(5), 1328–1340 (2013)CrossRefGoogle Scholar
  13. 13.
    Rovatti, R., Setti, G., Callegari, S.: Chaos-based FM signals: application and implementation issues. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(8), 1141–1147 (2013)MathSciNetGoogle Scholar
  14. 14.
    Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M., Acosta del Campo, O.R.: A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process. 109, 119–131 (2015)Google Scholar
  15. 15.
    Öztürk, I., Kılıç, R.: A novel method for producing pseudo random numbers from differential equation-based chaotic systems. Nonlinear Dyn. 80(3), 1147–1157 (2015)Google Scholar
  16. 16.
    Koyuncu, I., Ozcerit, A.T., Pehlivan, I.: Implementation of FPGA-based real time novel chaotic oscillator. Nonlinear Dyn. 77(1–2), 49–59 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76(4), 1951–1962 (2014)CrossRefGoogle Scholar
  18. 18.
    Sira-Ramirez, H., Cruz-Hernandez, C.: Synchronization of chaotic systems: a generalized Hamiltonian systems approach. Int. J. Bifurc. Chaos 11, 1381–1395 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Seyed, M.S., Benyamin, N., Mohammad, R.M., Sattar, M.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)Google Scholar
  20. 20.
    Wang, Y., Xiao, Z., Zhiming, Z., Wangjie, Q.: A colour image encryption algorithm using 4-pixel Feistel structure and multiple chaotic systems. Nonlinear Dyn. 81(1–2), 151–168 (2015)Google Scholar
  21. 21.
    Jianfeng, Z., Shuying, W., Yingxiang, C., Xianfeng, L.: A novel image encryption scheme based on an improper fractional-order chaotic system. Nonlinear Dyn. 80(4), 1721–1729 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • E. Tlelo-Cuautle
    • 1
  • V. H. Carbajal-Gomez
    • 1
  • P. J. Obeso-Rodelo
    • 2
  • J. J. Rangel-Magdaleno
    • 1
  • J. C. Núñez-Pérez
    • 2
  1. 1.INAOEPueblaMexico
  2. 2.IPN-CITEDITijuanaMexico

Personalised recommendations