Nonlinear Dynamics

, Volume 82, Issue 4, pp 1671–1682 | Cite as

Disturbance observer-based adaptive sliding mode control for near-space vehicles

  • Mou Chen
  • Jing Yu
Original Paper


In this paper, a new sliding mode disturbance observer (SMDO) is developed using the terminal sliding mode technique. The SMDO is employed to estimate unknown external disturbances and modeling uncertainties in finite time. Based on the designed SMDO, a boundary layer adaptive sliding mode attitude control scheme is proposed for near-space vehicles (NSVs). The designed attitude control scheme can guarantee the satisfactory attitude tracking performance of the multi-input and multi-output (MIMO) attitude motion for the NSV subject to the time-varying disturbance. The rigorous stability of the closed-loop system is proved using the Lyapunov method. Finally, simulation results are presented to illustrate the effectiveness the proposed control scheme.


Near-space vehicle Robust control Sliding model control Sliding mode disturbance observer Boundary layer control 


  1. 1.
    Jiang, B., Gao, Z.: Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2010)CrossRefGoogle Scholar
  2. 2.
    Chen, M., Zhou, Y.L., Guo, W.: Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO. Neurocomputing 114(11), 436–447 (2014)CrossRefGoogle Scholar
  3. 3.
    Chen, M., Jiang, B.: Robust attitude control of near space vehicles with time-varying disturbances. Int. J. Control Autom. Syst. 11(1), 182–187 (2013)CrossRefGoogle Scholar
  4. 4.
    Gao, Z., Jiang, B.: Fault-tolerant control for a near space vehicle with a stuck actuator fault based on a Takagi–Sugeno fuzzy model. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 224(5), 587–598 (2010)MathSciNetGoogle Scholar
  5. 5.
    Chen, M., Wu, Q.X., Jiang, C.S., Jiang, B.: Guaranteed transient performance based control for near space vehicles with input saturation. Sci. China Inf. Sci. 57(5), 1–12 (2014)MathSciNetGoogle Scholar
  6. 6.
    Zhou, L.: Robust adaptive control for near space vehicles based on backstepping approach. PhD thesis, Nanjing University of Aeronautics and Astronautics, Nanjing (2008)Google Scholar
  7. 7.
    Chen, M., Jiang, B., Wu, Q.X., Jiang, C.S.: Robust control of near-space vehicles with input backlash-like hysteresis. Proc. Inst. Mech. Eng. I: J. Syst. Control Eng. 227(8), 635–644 (2013)Google Scholar
  8. 8.
    Chen, M., Yu, J.: Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin. J. Aeronaut. 28(3), 853–864 (2015)CrossRefGoogle Scholar
  9. 9.
    Ito, D., Ward, D.T.: Robust dynamic inversion controller design and analysis for the X-38. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada (2001)Google Scholar
  10. 10.
    Wang, Y.F., Wu, Q.X.: NSV attitude system fuzzy modeling based on modified L–M algorithm. J. Southeast Univ. (Nat. Sci. Ed.) 40(1), 103–108 (2010)Google Scholar
  11. 11.
    Pu, M., Wu, Q.X.: New fast terminal sliding mode and its application to near space vehicles. Acta Aeronautica et Astronautica Sinica 32(7), 1283–1291 (2011)Google Scholar
  12. 12.
    Huang, J.C., Li, H.S.: Speed control of PMSM using fractional order integral sliding mode controller. J. Jilin Univ. (Eng. Technol. Ed.) 43(1), 28–35 (2013)Google Scholar
  13. 13.
    Xu, Y., Jiang, F.: Chatter free sliding mode control of a chaotic coal mine power grid with small energy inputs. Int. J. Min. Sci. Technol. 22(4), 477–481 (2012)CrossRefGoogle Scholar
  14. 14.
    Xiao, H., Yan, H.: Design and simulation of ship course discrete-time sliding mode controller based on RBFNN. J. Cent. South Univ. (Sci. Technol.) 44(1), 12–15 (2013)MathSciNetGoogle Scholar
  15. 15.
    Cheng, J., Yi, J.: Design of a sliding mode controller for trajectory tracking problem of marine vessels. Control Theory Appl. 1(1), 233–237 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xie, X.H., Dai, Y.F.: Fuzzy sliding mode controller for servo tracking control in precision machine tools. Control Theory Appl. 23(6), 913–918 (2003)Google Scholar
  17. 17.
    Jafarov, E.M., Tasaltin, R.: Robust sliding mode control for the uncertain MIMO aircraft model F-18. IEEE Trans. Aerosp. Electron. Syst. 36(4), 1127–1140 (2000)CrossRefGoogle Scholar
  18. 18.
    Sira, R.H., Zribi, M.: Dynamical sliding mode control approach for vertical flight regulation in helicopters. Control Theory Appl. 141(1), 19–24 (1994)zbMATHCrossRefGoogle Scholar
  19. 19.
    He, X.X., Qin, Z.H.: Adaptive iterative learning control for uncertain robot based on boundary layer. Control Theory Appl. 29(8), 1090–1093 (2012)Google Scholar
  20. 20.
    Wang, W.X., Guo, R.: Study of flow characteristics of hypersonic inlet based on boundary layer transition. Acta Aeronautica et Astronautica Sinica 33(10), 1772–1780 (2012)Google Scholar
  21. 21.
    Cui, R.X., Ge, S.S.: Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17), 1491–1502 (2010)CrossRefGoogle Scholar
  22. 22.
    Cui, R.X., Ren, B., Ge, S.S.: Synchronised tracking control of multi-agent system with high order dynamics. IET Control Theory Appl. 6(5), 603–614 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cui, R.X., Yan, W.: Mutual synchronization of multiple robot manipulators with unknown dynamics. J. Intell. Robot. Syst. 68(2), 105–119 (2012)zbMATHCrossRefGoogle Scholar
  24. 24.
    Xue, Y., Jiang, C.S.: Robust adaptive trajectory linearization control for aerospace vehicle. Syst. Eng. Electron. 30(3), 522–526 (2008)zbMATHGoogle Scholar
  25. 25.
    Takeshi, F., Somboon, S.: A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer. IEEE Trans. Ind. Electron. 39(2), 89–95 (1992)CrossRefGoogle Scholar
  26. 26.
    Mezouar, A., Fellah, M.K.: Adaptive sliding-mode-observer for sensorless induction motor drive using two-time-scale approach. Simul. Model. Pract. Theory 16(9), 1323–1336 (2008)CrossRefGoogle Scholar
  27. 27.
    Zhang, X.F., Wang, J.Y.: Design of sliding mode controller based on SMDO and its application to missile control. Acta Aeronautica et Astronautica Sinica 23(5), 873–880 (2011)Google Scholar
  28. 28.
    Zhang, Q., Wu, Q.X.: Robust reconfigurable tracking control of near space vehicle with actuator dynamic and input constraints. Control Theory Appl. 29(10), 1263–1271 (2012)Google Scholar
  29. 29.
    Zhang, J.: Robust adaptive control for nonlinear uncertain flight moving systems of near space vehicle. PhD thesis, Nanjing University of Aeronautics and Astronautics, Nanjing (2009)Google Scholar
  30. 30.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. control 58(6), 1247–1263 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 3, 379–384 (1998)Google Scholar
  32. 32.
    Levant, A.: High order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)Google Scholar
  33. 33.
    Lu, Y.S.: Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives. IEEE Trans. Ind. Electron. 56(9), 3743–3750 (2009)CrossRefGoogle Scholar
  34. 34.
    Besnard, L., Shtessel, Y.B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Frankl. Inst. 349(2), 658–664 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Hall, C.E., Shtessel, Y.B.: Sliding mode disturbance observer-based control for a reusable launch vehicle. J. Guid. Control Dyn. 29(6), 1315–1328 (2006)CrossRefGoogle Scholar
  36. 36.
    Jin, B., Xiong, S.: Chattering inhibition of variable rate reaching law sliding mode control for electro-hydraulic position servo system. J. Mech. Eng. 49(10), 163–169 (2013)CrossRefGoogle Scholar
  37. 37.
    Pu, M.: Robust adaptive sliding mode control for near space vehicle. PhD thesis, Nanjing University of Aeronautics and Astronautics, Nanjing (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations