Advertisement

Nonlinear Dynamics

, Volume 82, Issue 3, pp 1343–1354 | Cite as

Adaptive synchronization of fractional-order memristor-based neural networks with time delay

  • Haibo Bao
  • Ju H. Park
  • Jinde Cao
Original Paper

Abstract

This paper is concerned with the adaptive synchronization problem of fractional-order memristor-based neural networks with time delay. By combining the adaptive control, linear delay feedback control, and a fractional-order inequality, sufficient conditions are derived which ensure the drive–response systems to achieve synchronization. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.

Keywords

Synchronization Fractional-order Memristor-based neural networks Adaptive control 

Notes

Acknowledgments

The authors appreciate the editor’s work and the reviewers’ helpful comments and suggestions, and also thank for Prof. H. Jiang and Associate Prof. C. Hu’s help. The work of H. Bao was jointly supported by the National Natural Science Foundation of China under Grant No. 61203096, the Chinese Postdoctoral Science Foundation under Grant 2013M513924, the Fundamental Research Funds for Central Universities XDJK2013C001 and the scientific research support project for teachers with doctor’s degree, Southwest University under Grant No. SWU112024. The work of J.H. Park was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(2013R1A1A2A10005201).

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–825 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Liu, X., Cao, J., Yu, W.: Filippov systems and quasi-synchronization control for switched networks. Chaos 22(3), 033110 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Liang, J., Wang, Z., Liu, X.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53(1–2), 153–165 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Lu, J., Ho, D.W.: Globally exponential synchronization and synchronizability for general dynamical networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(2), 350–361 (2010)CrossRefGoogle Scholar
  5. 5.
    Yu, W., Cao, J., Lü, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7(1), 108–133 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cao, J., Chen, G., Li, P.: Global synchronization in an array of delayed neural networks with hybrid coupling. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 488–498 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    He, W., Cao, J.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372(4), 408–416 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Yu, W., Cao, J.: Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. Physica A: Stat. Mech. Appl. 375(2), 467–482 (2007)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Jiao, L., Wu, J., Wang, X.: Projective synchronization with different scale factors in a driven-response complex network and its application in image encryption. Nonlinear Anal.: Real World Appl. 11(4), 3045–3058 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Song, Q.: Design of controller on synchronization of chaotic neural networks with mixed time-varying delays. Neurocomputing 72(13), 3288–3295 (2009)CrossRefGoogle Scholar
  11. 11.
    Li, L., Cao, J.: Cluster synchronization in an array of coupled stochastic delayed neural networks via pinning control. Neurocomputing 74(5), 846–856 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19(1), 013120 (2009)Google Scholar
  13. 13.
    Yang, X., Cao, J.: Stochastic synchronization of coupled neural networks with intermittent control. Phys. Lett. A 373(36), 3259–3272 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Zheng, C., Cao, J.: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control. Neurocomputing 141, 153–159 (2014)CrossRefGoogle Scholar
  15. 15.
    Lu, J., Ho, D.W., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Yang, Y., Cao, J.: Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects. Nonlinear Anal.: Real World Appl. 11(3), 1650–1659 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)zbMATHGoogle Scholar
  18. 18.
    Podlubny, I.: Fractional Differential Equations. Academic press, New York (1999)zbMATHGoogle Scholar
  19. 19.
    Chai, Y., Chen, L., Wu, R., Sun, J.: Adaptive pinning synchronization in fractional-order complex dynamical networks. Phys. A 391(22), 5746–5758 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rakkiyappan, R., Sivasamy, R., Park, J.H.: Synchronization of fractional-order different memristor based chaotic systems using active control. Can. J. Phy. 92(12), 1688–1695 (2014)CrossRefGoogle Scholar
  21. 21.
    Mathiyalagan, K., Park, J.H., Sakthivel, R. Exponential synchronization for fractional-order chaotic systems with mixed uncertainties. Complexity (2014). doi: 10.1002/cplx.21547
  22. 22.
    Yang, L., Jiang, J.: Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1496–1506 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yu, J., Hu, C., Jiang, H., Fan, X.: Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014)zbMATHCrossRefGoogle Scholar
  24. 24.
    Tang, Y., Wang, Z., Fang, J.A.: Pinning control of fractional-order weighted complex networks. Chaos 19(1), 013112 (2009)Google Scholar
  25. 25.
    Shen, J., Lam, J.: State feedback H-infty control of commensurate fractional-order systems. Int. J. Syst. Sci. 45(3), 363–372 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Huang, X., Zhao, Z., Wang, Z., Li, Y.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)CrossRefGoogle Scholar
  27. 27.
    Rakkiyappan, R., Velmurugan, G., Cao, J.: Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 78(4), 2823–2836 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wu, R., Lu, Y., Chen, L.: Finite-time stability of fractional delayed neural networks. Neurocomputing 149, 700–707 (2015)CrossRefGoogle Scholar
  29. 29.
    Stamova, I.: Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 77(4), 1–10 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  31. 31.
    Tour, J.M., He, T.: Electronics: the fourth element. Nature 453(7191), 42–43 (2008)CrossRefGoogle Scholar
  32. 32.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)Google Scholar
  33. 33.
    Guo, Z., Wang, J., Yan, Z.: Attractivity analysis of memristor-based cellular neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 704–717 (2014)Google Scholar
  34. 34.
    Li, N., Cao, J.: New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes. Neural Netw. 61, 1–9 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wen, S., Bao, G., Zeng, Z., Chen, Y., Huang, T.: Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays. Neural Netw. 48, 195–203 (2013)zbMATHCrossRefGoogle Scholar
  36. 36.
    Wu, A., Wen, S., Zeng, Z.: Synchronization control of a class of memristor-based recurrent neural networks. Info. Sci. 183(1), 106–116 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhang, G., Shen, Y.: New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1701–1707 (2013)CrossRefGoogle Scholar
  38. 38.
    Zhang, G., Shen, Y.: Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw. 55, 1–10 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Chen, J., Zeng, Z., Jiang, P.: Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)CrossRefGoogle Scholar
  40. 40.
    Henderson, J., Ouahab, A.: Fractional functional differential inclusions with finite delay. Nonlinear Anal.: Theory, Methods & Appl. 70(5), 2091–2105 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Filippov, A.F.: Differential equations with discontinuous righthand sides. In: Mathematics and its Applications (Soviet Series). Kluwer Academic Publisher, Boston (1988)Google Scholar
  42. 42.
    Yu, J., Hu, C., Jiang, H.: Corrigendum to “Projective synchronization for fractional neural networks”. Neural Netw. 67, 152–154 (2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsSouthwest UniversityChongqingChina
  2. 2.Nonlinear Dynamics Group, Department of Electrical EngineeringYeungnam UniversityKyongsanRepublic of Korea
  3. 3.Department of MathematicsSoutheast UniversityNanjingChina
  4. 4.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations