Advertisement

Nonlinear Dynamics

, Volume 81, Issue 3, pp 1275–1288 | Cite as

A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium

  • Jian MaEmail author
  • Zengqiang Chen
  • Zhonglin Wang
  • Qing Zhang
Original Paper

Abstract

A new hyper-chaotic system is presented in this paper by adding a smooth flux-controlled memristor and a cross-product item into a three-dimensional autonomous chaotic system. It is exciting that this new memristive system can show a four-wing hyper-chaotic attractor with a line equilibrium. The dynamical behaviors of the proposed system are analyzed by Lyapunov exponents, bifurcation diagram and Poincaré maps. Then, by using the topological horseshoe theory and computer-assisted proof, the existence of hyperchaos in the system is verified theoretically. Finally, an electronic circuit is designed to implement the hyper-chaotic memristive system.

Keywords

Hyperchaos Four-wing attractor A line equilibrium Memristor Topological horseshoe 

Notes

Acknowledgments

This work is partially supported by Natural Science Foundation of China Grants No. 61174094, Tianjin Nature Science Foundation Grant No. 14JCYBJC18700 and Shandong Provincial Natural Science Foundation Grant No. ZR2012FM034.

References

  1. 1.
    Udaltsov, V., et al.: Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 95, 114–118 (2003)CrossRefGoogle Scholar
  2. 2.
    Vicente, R., Daudén, J., Colet, P., Toral, R.: Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J. Quantum Electron. 41, 541–548 (2005)CrossRefGoogle Scholar
  3. 3.
    Cafagna, D., Grassi, G.: New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring. Int. J. Bifurc. Chaos 13, 2889–2903 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hsieh, J.-Y., Hwang, C.-C., Wang, A.-P., Li, W.-J.: Controlling hyperchaos of the Rossler system. Int. J. Control 72, 882–886 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grassi, G., Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44, 1011–1013 (1997)CrossRefGoogle Scholar
  6. 6.
    Rossler, O.: An equation for hyperchaos. Phys. Lett. A. 71, 155–157 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kapitaniak, T., Chua, L.O.: Hyperchaotic attractors of unidirectionally-coupled Chuas circuits. Int. J. Bifurc. Chaos 4, 477–482 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  9. 9.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  10. 10.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Petras, I., Chen, Y.Q., Coopmans, C.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II Express Briefs 57, 975–979 (2010)CrossRefGoogle Scholar
  12. 12.
    Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20, 1567–1580 (2010)CrossRefGoogle Scholar
  13. 13.
    Grassi, G., Severance, F.L., Miller, D.A.: Multi-wing hyperchaotic attractors from coupled Lorenz systems. Chaos Solitons Fractals 41, 284–291 (2009)CrossRefGoogle Scholar
  14. 14.
    Cafagna, D., Grassi, G.: Fractional-order chaos: a novel four-wing attractor in coupled Lorenz systems. Int. J. Bifurc. Chaos 19, 3329–3338 (2009)CrossRefGoogle Scholar
  15. 15.
    Grassi, G., Severance, F.L., Mashev, E.D., Bazuin, B.J., Miller, D.A.: Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems. Int. J. Bifurc. Chaos 18, 2089–2094 (2008)CrossRefGoogle Scholar
  16. 16.
    Liu, W., Chen, G.: Can a three-dimensional smooth autonomous quadratic chaotic system generate a single four-scroll attractor? Int. J. Bifurc. Chaos 14, 1395–1403 (2004)CrossRefGoogle Scholar
  17. 17.
    Teng, L., Iu, H.H., Wang, X., Wang, X.: Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77, 231–241 (2014)CrossRefGoogle Scholar
  18. 18.
    Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li, Q., Tang, S., Zeng, H., Zhou, T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)CrossRefGoogle Scholar
  20. 20.
    Bo-Cheng, B., Zhong, L., Jian-Ping, X.: Dynamical analysis of memristor chaotic oscillator. Chin. J. Phys. 59, 3785–3793 (2010)Google Scholar
  21. 21.
    Fitch, A.L., Yu, D., Iu, H.H., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22, 1250133 (2012)CrossRefGoogle Scholar
  22. 22.
    Iu, H.H.-C., Yu, D., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a Twin-T notch filter. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1337–1344 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)CrossRefGoogle Scholar
  24. 24.
    Müller, P.C.: Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos Solitons Fractals 5, 1671–1681 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Björck, Ǎ.: Numerics of gram-schmidt orthogonalization. Linear Algebra Appl. 197, 297–316 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17, 275–291 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Qi, G., Chen, G., van Wyk, M.A., van Wyk, B.J., Zhang, Y.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Solitons Fractals 38, 705–721 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cang, S., Qi, G., Chen, Z.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Qi, G., Chen, G.: Analysis and circuit implementation of a new 4D chaotic system. Phys. Lett. A 352, 386–397 (2006)CrossRefGoogle Scholar
  31. 31.
    Yang, X.-S., Tang, Y.: Horseshoes in piecewise continuous maps. Chaos Solitons Fractals 19, 841–845 (2004)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang, X.-S.: Metric horseshoes. Chaos Solitons Fractals 20, 1149–1156 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang, X.-S., Li, Q.: Existence of horseshoe in a foodweb model. Int. J. Bifurc. Chaos 14, 1847–1852 (2004)CrossRefGoogle Scholar
  34. 34.
    Huang, Y., Yang, X.-S.: Horseshoes in modified Chen’s attractors. Chaos Solitons Fractals 26, 79–85 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Qing-Du, L., Song, T.: Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Chin. J. Phys. 62, 020510 (2013)Google Scholar
  36. 36.
    Yanchuk, S., Kapitaniak, T.: Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems. Phys. Rev. E 64, 056235 (2001)CrossRefGoogle Scholar
  37. 37.
    Yanchuk, S., Kapitaniak, T.: Chaos-hyperchaos transition in coupled Rössler systems. Phys. Lett. A 290, 139–144 (2001)CrossRefGoogle Scholar
  38. 38.
    Kapitaniak, T., Maistrenko, Y., Popovych, S.: Chaos-hyperchaos transition. Phys. Rev. E 62, 1972 (2000)CrossRefGoogle Scholar
  39. 39.
    Li, Q., Tang, S., Yang, X.-S.: Hyperchaotic set in continuous chaos-hyperchaos transition. Commun. Nonlinear Sci. Numer. Simul. 19, 3718–3734 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, vol. 28. CRC Press, Boca Raton (1999)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jian Ma
    • 1
    • 2
    Email author
  • Zengqiang Chen
    • 1
    • 3
  • Zhonglin Wang
    • 2
  • Qing Zhang
    • 3
  1. 1.College of Computer and Control EngineeringNankai UniversityTianjinChina
  2. 2.Department of Physics and ElectronicsBinzhou UniversityBinzhouChina
  3. 3.College of ScienceCivil Aviation University of ChinaTianjinChina

Personalised recommendations