Nonlinear Dynamics

, Volume 80, Issue 3, pp 1303–1327 | Cite as

On the dynamics of the eye: geodesics on a configuration manifold, motions of the gaze direction and Helmholtz’s theorem

Original Paper

Abstract

The simplest model with which to examine the dynamics of the human eye consists of a rigid body which is free to rotate about a fixed point. Two classical laws governing monocular vision, which are known as Listing’s law and Donders’ law, can be enforced in this model using a single holonomic constraint. While there has been considerable attention paid to the kinematics of the eye, the dynamics of the eye predicted by rigid body models has not received the same level of attention. In the present paper, the unforced dynamics of the resulting rigid body model are examined with particular emphasis placed on the geodesics of the configuration manifold. A comprehensive portrait of these motions is presented, and the insight gained is related to the dynamics of the gaze direction and saccadic motions of the eye. Among our results, we find that modeling the eye as an asymmetric rigid body produces a non-integrable system of governing equations and that the geodesics on the configuration manifold provide a wealth of potential motions for the gaze direction.

Keywords

Dynamics of the eye Constraints Geodesics Biomechanics 

Notes

Acknowledgments

The authors take this opportunity to thank Professor Clifton M. Schor (University of California at Berkeley) for his invaluable insights into, and perspectives on, the literature on kinematics of the eye.

References

  1. 1.
    Alexander, J.C., Antman, S.S.: The ambiguous twist of Love. Q. Appl. Math. 40(1), 83–92 (1982/83)Google Scholar
  2. 2.
    Cannata, G., Maggiali, M.: Models for the design of bioinspired robot eyes. IEEE Trans. Robot. 24(1), 27–44 (2008). doi:10.1109/TRO.2007.906270 CrossRefGoogle Scholar
  3. 3.
    Casey, J.: On the advantages of a geometrical viewpoint in the derivation of Lagrange’s equations for a rigid continuum. In: Casey, J., Crochet, M.J. (eds.) Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, pp. 805–847. Birkhaüser, Basel (1995). doi:10.1007/978-3-0348-9229-2_41
  4. 4.
    Crawford, J.D., Vilis, T.: Axes of eye rotation and Listing’s law during rotations of the head. J. Neurophysiol. 65(3), 407–423 (1991). http://jn.physiology.org/content/65/3/407
  5. 5.
    Demer, J., Oh, S., Clark, R., Poukens, V.: Evidence for a pulley of the inferior oblique muscle. Investig. Ophthalmol. Vis. Sci. 44(9), 3856–3865 (2003). doi:10.1167/iovs.03-0160 CrossRefGoogle Scholar
  6. 6.
    Fetter, M., Haslwanter, T., Misslisch, H., Tweed, D. (eds): Three-Dimensional Kinematics of Eye, Head and Limb Movements. Harwood Academic Publishers, Amsterdam (1997)Google Scholar
  7. 7.
    Ghosh, B., Wijayasinghe, I.: Dynamics of human head and eye rotations under Donders’ constraint. IEEE Trans. Autom. Control 57(10), 2478–2489 (2012). doi:10.1109/TAC.2012.2186183 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ghosh, B., Wijayasinghe, I., Kahagalage, S.: A geometric approach to head/eye control. Access IEEE 2, 316–322 (2014). doi:10.1109/ACCESS.2014.2315523 CrossRefGoogle Scholar
  9. 9.
    Haslwanter, T.: Mathematics of three-dimensional eye rotations. Vision. Res. 35(12), 1727–1739 (1995). doi:10.1016/0042-6989(94)00257-M CrossRefGoogle Scholar
  10. 10.
    van der Heijden, G.H.M., Peletier, M.A., Planqué, R.: On end rotation for open rods undergoing large deformations. Q. Appl. Math. 65(2), 385–402 (2007). doi:10.1090/S0033-569X-07-01049-X CrossRefMATHGoogle Scholar
  11. 11.
    Helmholtz, H.: Ueber die normalen Bewegungen des menschlichen Auges. Archiv für Ophthalmologie 9(2), 153–214 (1863). doi:10.1007/BF02720895 Google Scholar
  12. 12.
    von Helmholtz, H.: A Treatise on physiological optics, vol. III. Dover Publications, New York (1962). Translated from the (1910) third German edition and edited by J.P.C. SouthallGoogle Scholar
  13. 13.
    Hepp, K.: On Listing’s law. Commun. Math. Phys. 132(1), 285–292 (1990). doi:10.1007/BF02278012 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hepp, K.: Theoretical explanations of Listing’s law and their implication for binocular vision. Vision. Res. 35(23–24), 3237–3241 (1995). doi:10.1016/0042-6989(95)00104-M CrossRefGoogle Scholar
  15. 15.
    Hess, B.J.M.: Three-dimensional visuo-motor control of saccades. J. Neurophysiol. 109(1), 183–192 (2012). doi:10.1152/jn.00513.2012 CrossRefGoogle Scholar
  16. 16.
    Hestenes, D.: Invariant body kinematics: I. Saccadic and compensatory eye movements. Neural Netw. 7(1), 65–77 (1994). doi:10.1016/0893-6080(94)90056-6 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Howard, I.P., Evans, J.A.: The measurement of eye torsion. Vis. Res. 3(9–10), 447–455 (1963). doi:10.1016/0042-6989(63)90095-6 CrossRefGoogle Scholar
  18. 18.
    Judge, S.J.: Reflection makes sense of rotation of the eyes. Vis. Res. 46(22), 3862–3866 (2006). doi:10.1016/j.visres.2006.05.006 CrossRefGoogle Scholar
  19. 19.
    Kushner, B.J.: Ocular torsion: rotations around the “Why“ axis. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 8(1), 1–12 (2004). doi:10.1016/j.jaapos.2003.09.004 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lamb, H.: The kinematics of the eye. Philos. Mag. Ser. 6 38(228), 685–695 (1919). doi:10.1080/14786441208636001 CrossRefMATHGoogle Scholar
  21. 21.
    Lewis, D., Ratiu, T., Simo, J.C., Marsden, J.E.: The heavy top: a geometric treatment. Nonlinearity 5(1), 1–48 (1992). doi:10.1088/0951-7715/5/1/001 CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Liversedge, S.P., Gilchrist, I.D., Everling, S. (eds.): The Oxford Handbook of Eye Movements. Oxford University Press, Oxford (2011)Google Scholar
  23. 23.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)MATHGoogle Scholar
  24. 24.
    Miller, J.M.: Understanding and misunderstanding extraocular muscle pulleys. J. Vis. 7(11) (2007). doi:10.1167/7.11.10
  25. 25.
    Miller, J.M., Robinson, D.A.: A model of the mechanics of binocular alignment. Comput. Biomed. Res. 17(5), 436–470 (1984). doi:10.1016/0010-4809(84)90012-0 CrossRefGoogle Scholar
  26. 26.
    Nakayama, K.: Kinematics of normal and strabismic eyes. In: Schur, C.M., Ciuffreda, K.J. (eds.) Vergence Eye Movements: Basic and Clinical Aspects, chap. 16, pp. 543–564. Butterworths, Boston, MA (1983)Google Scholar
  27. 27.
    O’Reilly, O.M.: On the computation of relative rotations and geometric phases in the motions of rigid bodies. ASME J. Appl. Mech. 64(4), 969–974 (1997). doi:10.1115/1.2789008 CrossRefMATHGoogle Scholar
  28. 28.
    O’Reilly, O.M.: Intermediate Dynamics for Engineers: A Unified Treatment of Newton-Euler and Lagrangian Mechanics. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  29. 29.
    O’Reilly, O.M., Payen, S.: The attitudes of constant angular velocity motions. Int. J. Non-Linear Mech. 41(6–7), 1–10 (2006). doi:10.1016/j.ijnonlinmec.2006.05.001 MathSciNetGoogle Scholar
  30. 30.
    O’Reilly, O.M., Srinivasa, A.R.: A simple treatment of constraint forces and constraint moments in the dynamics of rigid bodies. ASME Appl. Mech. Rev. 67(1), 014,801 (2014). doi:10.1115/1.4028099 CrossRefGoogle Scholar
  31. 31.
    Polpitiya, A., Dayawansa, W., Martin, C., Ghosh, B.: Geometry and control of human eye movements. IEEE Trans. Autom. Control 52(2), 170–180 (2007). doi:10.1109/TAC.2006.887902 CrossRefMathSciNetGoogle Scholar
  32. 32.
    Quaia, C., Optician, L.M.: Three-dimensional rotations of the eye. In: Levin, L.A. (ed.) Adler’s Physiology of the Eye, 11th edn, pp. 208–219. Elsevier, New York (2011)CrossRefGoogle Scholar
  33. 33.
    Raphan, T.: Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory. J. Neurophysiol. 79(5), 2653–2667 (1998). http://jn.physiology.org/content/79/5/2653.abstract
  34. 34.
    Robinson, D.: A method of measuring eye movement using a scieral search coil in a magnetic field. IEEE Trans. Biomed. Electron. 10(4), 137–145 (1963). doi:10.1109/TBMEL.1963.4322822 Google Scholar
  35. 35.
    Robinson, D.: A quantitative analysis of extraocular muscle corporation and squint. Investig. Opthalmol. Vis. Sci. 14(11), 801–825 (1975)Google Scholar
  36. 36.
    Rogers, B., Brecher, K.: Straight lines, ‘uncured lines’, and Helmholtz’s ‘great circles on the celestial sphere’. Perception 36(9), 1275–1289 (2007). doi:10.1068/p5652 CrossRefGoogle Scholar
  37. 37.
    Schreiber, K.M., Schor, C.M.: A virtual ophthalmotrope illustrating oculomotor coordinate systems and retinal projection geometry. J. Vis. 7(10), 1–14 (2007). doi:10.1167/7.10.4 CrossRefGoogle Scholar
  38. 38.
    Simonsz, H.J., Tonkelaar, I.: 19th Century mechanical models of eye movements, Donders’ law, Listing’s law and Helmholtz’ direction circles. Doc. Ophthalmol. 74(1–2), 95–112 (1990). doi:10.1007/BF00165667 CrossRefGoogle Scholar
  39. 39.
    Synge, J.L., Schild, A.: Tensor calculus. University of Toronto Press, Toronto (1949)MATHGoogle Scholar
  40. 40.
    Tweed, D., Cadera, W., Vilis, T.: Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vis. Res. 30(1), 97–110 (1990). doi:10.1016/0042-6989(90)90130-D CrossRefGoogle Scholar
  41. 41.
    Tweed, D., Vilis, T.: Implications of rotational kinematics for the oculomotor system in three dimensions. J. Neurophysiol. 58(4), 832–849 (1987)Google Scholar
  42. 42.
    Tweed, D., Vilis, T.: Geometric relations of eye position and velocity vectors during saccades. Vis. Res. 30(1), 111–127 (1990). doi:10.1016/0042-6989(90)90131-4 CrossRefGoogle Scholar
  43. 43.
    Wei, Q., Sueda, S., Pai, D.K.: Physically-based modeling and simulation of extraocular muscles. Prog. Biophys. Mol. Biol. 103(2/3), 273–283 (2010). doi:10.1016/j.pbiomolbio.2010.09.002. Special Issue on Biomechanical Modelling of Soft Tissue Motion
  44. 44.
    Westheimer, G.: Kinematics of the eye. J. Opt. Soc. Am. 47(10), 967–974 (1957). doi:10.1364/JOSA.47.000967 CrossRefGoogle Scholar
  45. 45.
    Wong, A.M.F.: Listing’s law: clinical significance and implications for neural control. Surv. Ophthalmol. 49(6), 563–575 (2004). doi:10.1016/j.survophthal.2004.08.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations