Advertisement

Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 945–957 | Cite as

Adaptive fuzzy output feedback tracking control with prescribed performance for chemical reactor of MIMO nonlinear systems

  • Lili Zhang
  • Shuai Sui
  • Yongming Li
  • Shaocheng Tong
Original Paper

Abstract

In this paper, a fuzzy adaptive control approach with prescribed performance is developed for a chemical reactor of multi-input and multi-output nonlinear systems with unmeasured states. Using fuzzy logic systems to model the uncertain nonlinear systems, a fuzzy adaptive observer is designed for immeasurable states estimations. Under the framework of the backstepping design and incorporated by the predefined performance technique, a new fuzzy adaptive output feedback control is developed. It is shown that all the signals of the resulting closed-loop systems are bounded, and the tracking errors remain within an adjustable neighborhood of the origin with the prescribed performance bounds. The detailed simulation results and performance comparisons are provided to demonstrate the effectiveness of the proposed control approach.

Keywords

Chemical reactor system Adaptive fuzzy control Output feedback control Prescribed performance control 

References

  1. 1.
    Elmali, H., Olgac, N.: Robust output tracking control of nonlinear MIMO systems via sliding mode technique. Automatica 28, 145–151 (1992)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chang, Y.C.: An adaptive \(H_\infty \) tracking control for a class of nonlinear multiple-input multiple-output (MIMO) systems. IEEE Trans. Autom. Control 46, 1432–1437 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Lin, W., Qian, C.J.: Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback. Automatica 37, 1093–1101 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Yao, B., Tomizuka, M.: Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms. Automatica 37, 1305–1321 (2001)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  6. 6.
    Zhang, H., Bien, Z.: Adaptive fuzzy control of MIMO nonlinear systems. Fuzzy Sets Syst. 115, 191–204 (2000)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Tong, S.C., Tang, J.T., Wang, T.: Adaptive fuzzy control for multivariable nonlinear systems. Fuzzy Sets Syst. 111, 153–167 (2000)Google Scholar
  8. 8.
    Chiu, C.S.: Mixed feedforward/feedback based adaptive fuzzy control for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 14, 716–727 (2006)CrossRefGoogle Scholar
  9. 9.
    Boulkroune, A., Tadjine, M., M’Saad, M., Farza, M.: Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction. Fuzzy Sets Syst. 161, 797–820 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Wang, H.Q., Chen, B., Lin, C.: Direct adaptive neural control for strict-feedback stochastic nonlinear systems. Nonlinear Dyn. 67, 2703–2718 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Wang, H.Q., Chen, B., Lin, C.: Adaptive neural tracking control for a class of perturbed pure-feedback nonlinear systems. Nonlinear Dyn. 72, 207–220 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chen, B., Liu, X.P.: Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans. Fuzzy Syst. 15, 287–300 (2007)CrossRefGoogle Scholar
  13. 13.
    Lee, H.: Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 265–275 (2011)CrossRefGoogle Scholar
  14. 14.
    Chen, B., Liu, X.P., Liu, K.F., Lin, C.: Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica 45, 1554–1560 (2009)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Chen, B., Liu, X.P., Liu, K.F., Lin, C.: Adaptive control for nonlinear MIMO time-delay systems based on fuzzy approximation. Inf. Sci. 222, 576–592 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Tong, S.C., Li, C.Y., Li, Y.M.: Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst. 160, 2755–2775 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Tong, S.C., Li, Y.M.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21, 134–146 (2013)CrossRefGoogle Scholar
  18. 18.
    Wu, L.G., Wang, C.H., Zeng, Q.S.: Observer-based sliding mode control for a class of uncertain nonlinear neutral delay systems. J. Frankl. Inst. 345, 233–253 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Liu, M., Sun, G.H.: Observer-based sliding mode control for Itô stochastic time-delay systems with limited capacity channel. J. Frankl. Inst. 349, 1602–1616 (2012)CrossRefMATHGoogle Scholar
  20. 20.
    Mao, Z.M., Jiang, B., Shi, P.: Observer based fault-tolerant control for a class of nonlinear networked control systems. J. Frankl. Inst. 347, 940–956 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov function for control of output-constrained nonlinear systems. Automatica 45, 918–927 (2009)Google Scholar
  22. 22.
    Niu, B., Zhao, J.: Tracking control for output-constrained nonlinear switched systems with a barrier Lyapunov function. Int. J. Syst. Sci. 44, 978–985 (2013)Google Scholar
  23. 23.
    Benchlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53, 2090–2099 (2008)CrossRefGoogle Scholar
  24. 24.
    Benchlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45, 532–538 (2009)CrossRefGoogle Scholar
  25. 25.
    Liu, X.P., Gu, G.X., Zhou, K.: Robust stabilization of MIMO nonlinear systems by backstepping. Automatica 35, 987–992 (1999)CrossRefMATHGoogle Scholar
  26. 26.
    Liu, X.P., Jutan, A., Rohani, S.: Almost disturbance decoupling of MIMO nonlinear systems and application to chemical processes. Automatica 40, 465–471 (2004)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Chen, B., Liu, X.P.: Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes. IEEE Trans. Fuzzy Syst. 13, 832–847 (2005)CrossRefGoogle Scholar
  28. 28.
    Li, T.S., Wang, D., Chen, N.: Adaptive fuzzy control of uncertain MIMO non-linear systems in block-triangular forms. Nonlinear Dyn. 63, 105–123 (2011)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Yu, J.P., Chen, B., Yu, H.S.: Fuzzy-approximation-based adaptive control of the chaotic permanent magnet synchronous motor. Nonlinear Dyn. 69, 1479–1488 (2012)CrossRefMATHGoogle Scholar
  30. 30.
    Sun, G., Wang, D., Li, T.S., Peng, Z., Wang, H.: Single neural network approximation based adaptive control for a class of uncertain strict-feedback nonlinear systems. Nonlinear Dyn. 72, 175–184 (2013)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Tong, S.C., Huo, B.Y., Li, Y.M.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22, 1–15 (2014)CrossRefGoogle Scholar
  32. 32.
    Tong, S.C., Li, Y.M.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20, 168–180 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lili Zhang
    • 1
  • Shuai Sui
    • 1
  • Yongming Li
    • 1
  • Shaocheng Tong
    • 1
  1. 1.Department of Basic MathematicsLiaoning University of TechnologyJinzhouChina

Personalised recommendations