Advertisement

Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 905–916 | Cite as

A novel observer-based finite-time control method for modified function projective synchronization of uncertain chaotic (hyperchaotic) systems

  • Xuan-Toa Tran
  • Hee-Jun Kang
Original Paper

Abstract

This paper presents a novel observer-based finite-time control (NOBFTC) method for the modified function projective synchronization of chaotic (hyperchaotic) systems in the presence of uncertainties and external disturbances. First, a novel finite-time convergence observer is proposed to estimate the uncertainty term. Then, an NOBFTC law is designed to provide robustness, high precision, and fast and finite-time modified function projective synchronization. Moreover, no chattering phenomenon exists due to the continuity of the proposed controller. The global finite-time stability of the closed-loop system is rigorously proven. Numerical simulations are presented to demonstrate the robustness, effectiveness, and feasibility of the proposed strategy and to verify the theoretical results.

Keywords

Modified function projective synchronization Finite-time observer Finite-time control Uncertain chaotic (hyperchaotic) system 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

References

  1. 1.
    Chen, G., Dong, X.: From Chaos to Order: Methodologies. Perspectives and Applications. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  2. 2.
    Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18, 141–148 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Luo, A.C.J.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14, 1901–1951 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Perora, L.M., Caroll, T.L.: Synchronization in chaotic system. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Vincent, U.E.: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos Solitons Fractals 37(4), 1065–1075 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Njah, A.N.: Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61(1–2), 1–9 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W., Park, Y.J.: Anti-synchronization of chaotic oscillators. Phys. Lett. A 320(1), 39–46 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Yan, J., Li, C.: Generalized projective synchronization of a unified chaotic system. Chaos Solitons Fractals 26(4), 1119–1124 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Li, G.H.: Generalized projective synchronization between Lorenz system and Chens system. Chaos Solitons Fractals 32(4), 1454–1458 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Yan, Z.: Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems—a symbolic-numeric computation approach. Chaos 15(2), 023902 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hu, M., Yang, Y., Xu, Z., Guo, L.: Hybrid projective synchronization in a chaotic complex nonlinear system. Math. Comput. Simul. 79(3), 449–457 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Li, G.H.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32(5), 1786–1790 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zhang, R., Yang, Y., Xu, Z., Hu, M.: Function projective synchronization in drive response dynamical network. Phys. Lett. A 374(30), 3025–3028 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal. Real World Appl. 11(2), 705–712 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Du, H., Zeng, Q., Wang, C.: Modified function projective synchronization of chaotic system. Chaos Solitons Fractals 42(4), 2399–2404 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sudheer, K.S., Sabir, M.: Modified function projective synchronization of hyperchaotic systems through open-plus-closed-loop coupling. Phys. Lett. A 374(1920), 2017–2023 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)CrossRefGoogle Scholar
  18. 18.
    Sabanovic, A.: Variable structure systems with sliding modes in motion control—a survey. IEEE Trans. Ind. Electron. 7(2), 212–223 (2011)Google Scholar
  19. 19.
    Zhang, H., Ma, X.K., Liu, W.Z.: Synchronization of chaotic systems with parametric uncertainty using active sliding mode control. Chaos Solitons Fractals 21(5), 1249–1257 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Yan, J.J., Yang, Y.S., Chiang, T.Y., Chen, C.Y.: Robust synchronization of unified chaotic systems via sliding mode control. Chaos Solitons Fractals 34(3), 947–954 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mou, C., Jiang, C.S., Bin, J., Wu, Q.X.: Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos Solitons Fractals 39(4), 1856–1863 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Naseh, M.R., Haeri, M.: Robustness and robust stability of the active sliding mode synchronization. Chaos Solitons Fractals 39(1), 196–203 (2009)CrossRefGoogle Scholar
  23. 23.
    Shen, L., Liu, W., Ma, J.: Robust function projective synchronization of a class of uncertain chaotic systems. Chaos Solitons Fractals 42(2), 1292–1296 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zhao, Y., Wang, W.: Chaos synchronization in a Josephson junction system via active sliding mode control. Chaos Solitons Fractals 41(1), 60–66 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zribi, M., Smaoui, N., Salim, H.: Synchronization of the unified chaotic systems using a sliding mode controller. Chaos Solitons Fractals 42(5), 3197–3209 (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    Cai, N., Jing, Y., Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1613–1620 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Chai, Y., Chen, L.Q.: Projective lag synchronization of spatiotemporal chaos via active sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 17(8), 3390–3398 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Chen, D., Zhang, R., Ma, X., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69(1–2), 35–55 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Jawaada, W., Noorani, M.S.M., Mossa Al-sawalha, M.: Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances. Nonlinear Anal. Real World Appl. 13(5), 2403–2413 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Bhat, S.P., Bernstein, D.S.: Finite time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)Google Scholar
  31. 31.
    Millerioux, G., Mira, C.: Finite-time global chaos synchronization for piecewise linear maps. IEEE Trans. Circuits Syst. I 48(1), 111–116 (2001)CrossRefzbMATHGoogle Scholar
  32. 32.
    Li, S., Tian, Y.P.: Finite time synchronization of chaotic systems. Chaos Solitons Fractals 15(2), 303–310 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Yang, Y., Wu, X.: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dyn. 70(1), 197–208 (2012)CrossRefzbMATHGoogle Scholar
  34. 34.
    Lin, H., Cai, J.: Finite-time synchronization of a class of autonomous chaotic systems. Pramana J. Phys. 82(3), 489–498 (2014)Google Scholar
  35. 35.
    Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal. Real World Appl. 10, 2842–2849 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2239–2247 (2009)Google Scholar
  37. 37.
    Aghababa, M.P., Feizi, H.: Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances. Trans. Inst. Meas. Control 34(8), 990–997 (2012)CrossRefGoogle Scholar
  38. 38.
    Venkataraman, S.T., Gulati, S.: Control of nonlinear systems using terminal sliding modes. J. Dyn. Syst. Meas. Control 115(3), 554–560 (1993)CrossRefzbMATHGoogle Scholar
  39. 39.
    Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birhauser-Springer, New York (2014)CrossRefGoogle Scholar
  40. 40.
    Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Polyaknov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Frankl. Inst. 351(4), 1831–1865 (2014)CrossRefGoogle Scholar
  42. 42.
    Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upsaddle River (2002)zbMATHGoogle Scholar
  44. 44.
    Li, S., Tian, Y.P.: Finite-time stability of cascaded time-varying systems. Int. J. Control 80(4), 646–657 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Gao, T., Chen, Z., Gu, Q., Yuan, Z.: A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback. Chaos Solitons Fractals 35(2), 390–397 (2008)CrossRefGoogle Scholar
  46. 46.
    Dadras, S., Homeni, H.R., Qi, G., Wang, Z.: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67, 1161–1173 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations