Advertisement

Nonlinear Dynamics

, Volume 80, Issue 1–2, pp 715–721 | Cite as

Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in \({\varvec{\mathcal {PT}}}\)-symmetric nonlinear couplers with gain and loss

  • Chao-Qing Dai
  • Yue-Yue Wang
Original Paper

Abstract

We investigate a (2+1)-dimensional-coupled variable coefficient nonlinear Schrödinger equation in parity time symmetric nonlinear couplers with gain and loss and analytically obtain a combined structure solution via the Darboux transformation method. When the imaginary part of the eigenvalue \(n\) is smaller or bigger than 1, we can obtain the combined Peregrine soliton and Akhmediev breather, or Kuznetsov–Ma soliton, respectively. Moreover, we study the controllable behaviors of this combined Peregrine soliton and Kuznetsov–Ma soliton structure in a diffraction decreasing system with exponential profile. In this system, the effective propagation distance \(Z\) exists a maximal value \(Z_m\) and the maximum amplitude of the KM soliton appears in the periodic locations \(Z_{i}\). By modulating the relation between values of \(Z_m\) and \(Z_i\), we realize the control for the excitation of the combined Peregrine soliton and Kuznetsov–Ma soliton, such as the restraint, maintenance, and postpone.

Keywords

\({\mathcal {PT}}\)-symmetric nonlinear couplers (2+1)-dimensional-coupled nonlinear Schrödinger equation Combined Peregrine soliton and Kuznetsov–Ma soliton Controllable behavior 

Notes

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F050006), the National Natural Science Foundation of China (Grant Nos. 11375007 and 11404289), and the Scientific Research and Developed Fund of Zhejiang A & F University (Grant No. 2014FR020). Dr. Chao-Qing Dai is also sponsored by the Foundation of New Century “151 Talent Engineering” of Zhejiang Province of China and Youth Top-notch Talent Development and Training Program of Zhejiang A & F University.

References

  1. 1.
    Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)CrossRefGoogle Scholar
  2. 2.
    Lü, X., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrodinger system in the optical fiber communications. Nonlinear Dyn. 73, 405–410 (2013)CrossRefMATHGoogle Scholar
  3. 3.
    Dai, C.Q., Wang, Y.Y.: Light bullet in parity-time symmetric potential. Nonlinear Dyn. 77, 1133–1139 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dai, C.Q., Zhang, J.F.: Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background. Nonlinear Dyn. 73, 2049–2057 (2013)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Wang, Y.Y., Dai, C.Q.: Elastic interactions between multi-valued foldons and anti-foldons for the (2+1)-dimensional variable coefficient Broer-Kaup system in water waves. Nonlinear Dyn. 74, 429–438 (2013)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Xiang, J.J., Jiang, H.J., Wang, Y.Y., Dai, C.Q.: Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels. Nonlinear Dyn. 75, 201–207 (2014)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhong, W.P., Belic, M.R., Huang, T.W.: Rogue wave solutions to the generalized nonlinear Schrodinger equation with variable coefficients. Phys. Rev. E 87, 065201 (2013)CrossRefGoogle Scholar
  9. 9.
    Wu, X.F., Hua, G.S., Ma, Z.Y.: Novel rogue waves in an inhomogenous nonlinear medium with external potentials. Commun. Nonlinear Sci. Numer. Simul. 18, 3325–3336 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Broad, W.J.: Rogue Giants at Sea. The New York Times, New York (2006)Google Scholar
  11. 11.
    Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B25, 16 (1983)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Dokl. Akad. Nauk SSSR 236, 575–577 (1977)Google Scholar
  14. 14.
    Ma, Y.C.: The perturbed plane-wave solution of the cubic Schrodinger equation. Stud. Appl. Math. 60, 43–58 (1979)MathSciNetGoogle Scholar
  15. 15.
    Zhu, H.P., Pan, Z.H., Fang, J.P.: Controllability for two-Kuznetsov-Ma solitons in a (2 + 1)-dimensional graded-index grating waveguide. Eur. Phys. J. D 68, 69–6 (2014)CrossRefGoogle Scholar
  16. 16.
    Dai, C.Q., Wang, Y.Y.: Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrödinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)CrossRefGoogle Scholar
  17. 17.
    Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion management. IEEE J. Sel. Top. Quantum Electron. 8, 418–431 (2002)CrossRefGoogle Scholar
  18. 18.
    El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)CrossRefGoogle Scholar
  19. 19.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)CrossRefGoogle Scholar
  21. 21.
    Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Midya, B., Roychoudhury, R.: Nonlinear localized modes in PT-symmetric optical media with competing gain and loss. Ann. Phys. 341, 12–20 (2014)CrossRefGoogle Scholar
  23. 23.
    Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)CrossRefGoogle Scholar
  24. 24.
    Dai, C.Q., Wang, Y.: Three-dimensional structures of the spatiotemporal nonlinear Schrodinger equation with power-law nonlinearity in PT-symmetric potentials. Plos One 9(7), e100484 (2014). doi: 10.1371/journal.pone.0100484
  25. 25.
    Wang, Y.Y., Dai, C.Q., Wang, X.G.: Spatiotemporal localized modes in PT-symmetric optical media. Ann. Phys. 348, 289–296 (2014)CrossRefGoogle Scholar
  26. 26.
    Zhu, H.P., Dai, C.Q.: Gaussian-type light bullet solutions of the (3+1)-dimensional Schrödinger equation with cubic and power-law nonlinearities in PT-symmetric potentials. Ann. Phys. 351, 68–78 (2014)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Dai, C.Q., Huang, W.H.: Multi-rogue wave and multi-breather solutions in PT-symmetric coupled waveguides. Appl. Math. Lett. 32, 35–40 (2014)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Chen, Y., Snyder, A.W., Payne, D.N.: Twin core nonlinear couplers with gain and loss. IEEE J. Quantum Electron. 28, 239–245 (1992)CrossRefGoogle Scholar
  29. 29.
    Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nature Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  30. 30.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT -symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)CrossRefGoogle Scholar
  31. 31.
    Abdullaeev, F.: Theory of Solitons in Inhomogeneous Media. Wiley, New York (1994)Google Scholar
  32. 32.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)CrossRefGoogle Scholar
  33. 33.
    Dai, C.Q., Wang, Y.Y., Wang, X.G.: Ultrashort self-similar solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients in the inhomogeneous fiber. J. Phys. A Math. Theor. 44, 155203 (2011)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782 (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of SciencesZhejiang A & F UniversityLin’anPeople’s Republic of China
  2. 2.Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang ProvinceZhejiang A & F UniversityLin’anPeople’s Republic of China

Personalised recommendations