Advertisement

Nonlinear Dynamics

, Volume 79, Issue 4, pp 2735–2752 | Cite as

Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation

  • Bin Xian
  • Chen Diao
  • Bo Zhao
  • Yao Zhang
Original Paper

Abstract

In this paper, a new quaternion-based nonlinear robust output feedback tracking controller is developed to address the attitude and altitude tracking problem of a quadrotor unmanned aerial vehicle which is subject to structural uncertainties and unknown external disturbances. By using the unit quaternion representation, the singularity associated with orientation representations can be avoided. A set of non-model-based filters are introduced to provide estimations for the unmeasurable angular velocities and translational velocity in the altitude direction of the quadrotor in the case that velocity feedback is unavailable. Approximation components based on neural network (NN) are introduced to estimate the modeling uncertainties, and robust feedback components are designed to compensate for external disturbances and NN reconstruction errors. The Lyapunov-based stability analysis is employed to prove that a semiglobally asymptotic tracking result is achieved and all the closed-loop states remain bounded. Numerical simulation results are provided to illustrate the good tracking performance of the proposed control methodologies.

Keywords

Quadrotor Output feedback control Nonlinear Quaternion 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Tianjin (Grants No. 14JCZDJC31900), and National Natural Science Foundation of China (Grants Nos. 90916004, 60804004).

References

  1. 1.
    How, J.P., Bethke, B., Frank, A., Dale, D., Vian, J.: Real time indoor autonomous vehicle test environment. IEEE Control Syst. Mag. 28(2), L51–64 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.L.: Adaptive control of quadrotor UAVs in the presence of actuator uncertainties. In: Proceedings of the 2010 AIAA Infotech@Aerospace, Atlanta, Georgia, USA, AIAA 2010, p. 3416 (2010)Google Scholar
  3. 3.
    Bouabdallah, S.A., Noth, A., Siegwart, R.: PID vs LQ controltechniques applied to an indoor micro quadrotor. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, pp. 2451–2456 (2004)Google Scholar
  4. 4.
    Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)Google Scholar
  5. 5.
    Mellinger, D., Shomin, M., Kumar, V.: Control of quadrotors for robust perching and landing. In: Proceedings of the 2010 International Powered Lift Conference, Philadelphia, PA, USA, pp. 1203–1225 (2010)Google Scholar
  6. 6.
    Colrado, J., Barrientos, A., Martinez, A., Lafaverges, B., Valente, J.: Mini-quadrotor attitude control based on hybrid backstepping and Frenet–Serret theory. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 1617–1622 (2010)Google Scholar
  7. 7.
    Dikmen, I.C., Arisoy, A., Temeltas, H.: Attitude control of a quadrotor. In: Proceedings of the 4th International Conference on Recent Advances in Space Technologies, pp. 722–727 (2009)Google Scholar
  8. 8.
    Fernando, T., Chandiramani, J., Lee, T., Gutierrez, H.: Robust adaptive geometric tracking controls on SO(3) with an application to the attitude dynamics of a quadrotor UAV. In: Proceedings of the 2011 IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 7380–7385 (2011)Google Scholar
  9. 9.
    Zeng, W., Xian, B., Diao, C., Yin, Q., Li, H.T., Yang, Y.G.: Nonlinear adaptive regulation control of a quadrotor unmanned aerial vehicle. In: Proceedings of the 2011 IEEE Multi-Conference on Systems and Control, Denver, CO, USA, pp. 133–138 (2011)Google Scholar
  10. 10.
    Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)CrossRefGoogle Scholar
  11. 11.
    Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5(9), 1140–1146 (2011)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bouchoucha, M., Seghour, S., Tadjine, M.: Classical and second order sliding mode control solution to an attitude stabilization of a four rotors helicopter: from theory to experiment. In: Proceedings of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, pp. 162–169 (2011)Google Scholar
  14. 14.
    Gonzalez, I., Salazar, S., Lozano, R., Escareno, J.: Real-time altitude robust controller for a quad-rotor aircraft using sliding-mode control technique. In: Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, Atlanta, GA, USA, pp. 650–659 (2013)Google Scholar
  15. 15.
    Tony, C.T., Mackunisy, W.: Robust attitude tracking control of a quadrotor helicopter in the presence of uncertainty. In: Proceedings of the 2012 IEEE Conference on Decision and Control, Daytona Beach, Maui, Hawaii, USA, pp. 937–942 (2012)Google Scholar
  16. 16.
    Liu, H., Bai, Y.Q., Lu, G., Zhong, Y.S.: Robust attitude control of uncertain quadrotors. IET Control Theory Appl. 7(11), 1583–1589 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Bialy, B.J., Klotz, J., Brink, K., Dixon, W.E.: Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties. In: Proceedings of the 2013 American Control Conference, Washington, DC, USA, pp. 13–18 (2013)Google Scholar
  18. 18.
    Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng. Pract. 11(8), 790–797 (2011)CrossRefGoogle Scholar
  19. 19.
    Sun, N., Fang, Y.C., Zhang, X.B.: Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica 49(5), 1318–1325 (2013)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Madani, T., Benallegue, A.: Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In: Proceedings of the 2007 American Control Conference, New York City, USA, pp. 5887–5892 (2007)Google Scholar
  21. 21.
    Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)CrossRefGoogle Scholar
  22. 22.
    Lee, D.B., Burg, T., Xian, B., Dawson, D.M.: Output feedback tracking control of an underactuated quad-rotor UAV. In: Proceedings of the 2007 American Control Conference, New York City, USA, pp. 1775–1780 (2007)Google Scholar
  23. 23.
    Benzemrane, K., Santosuosso, G.L., Damm, G.: Unmanned Aerial Vehicle Speed Estimation via Nonlinear Adaptive Observers. In: Proceedings of the 2007 American Control Conference, New York City, USA, pp. 985–990 (2007)Google Scholar
  24. 24.
    Liao, F., Lum, K.Y., Wang, J.L.: Flight control of VTOL quadrotor aircraft via output feedback. In: Proceedings of the 2010 AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, AIAA 2010, p. 808 (2010)Google Scholar
  25. 25.
    Diao, C., Xian, B., Zhao, B., Zhang, X., Liu, S.B.: An output feedback attitude tracking controller design for quadrotor unmanned aerial vehicles using quaternion. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 3051–3056 (2013)Google Scholar
  26. 26.
    Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1994)Google Scholar
  27. 27.
    Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)Google Scholar
  28. 28.
    Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators. MacMillan Publishing Co., New York (1993)Google Scholar
  29. 29.
    Lizarralde, F., Wen, J.T.: Attitude control without angular velocity measurement: a passivity approach. IEEE Trans. Autom. Control 41(3), 468–472 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Dawson, D.M., Hu, J., Burg, T.C.: Nonlinear Control of Electric Machinery. Marcel Dekker, New York (1998)Google Scholar
  31. 31.
    Costic, B.T., Dawson, M., de Queiroz, M.S., Kapila, V.: Quaternion-based adaptive attitude tracking controller without velocity measurements. J. Guid. Control Dyn. 24(6), 1214–1222 (2001)CrossRefGoogle Scholar
  32. 32.
    Xian, B., de Queiroz, M.S., Dawson, D.M., McIntyre, M.L.: A discountinuous output feedback controller and velocity observer for nonlinear mechanical system. Automatica 40(4), 695–700 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Khalil, H.: Nonlinear System. Prentice-Hall, New Jersey (2002)Google Scholar
  34. 34.
    Serrani, A., Isidori, A., Marconi, L.: Semiglobal nonlinear output regulation with adaptive internal model. IEEE Trans. Autom. Control 46(8), 1178–1194 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.The Institute of Robotics and Autonomous System, the Tianjin Key Laboratory of Process Measurement and Control, Schoool of Electrical Engineering and AutomationTianjin UniversityTianjinChina

Personalised recommendations