Nonlinear Dynamics

, Volume 79, Issue 4, pp 2333–2343 | Cite as

Complex transient dynamics in periodically forced memristive Chua’s circuit

  • Bocheng BaoEmail author
  • Pan Jiang
  • Huagan Wu
  • Fengwei Hu
Original Paper


When a sinusoidal voltage stimulus is applied, memristive Chua’s circuit becomes a non-autonomous periodically forced nonlinear circuit. By utilizing theoretical formulations, simulations and experimental verifications, the complex transient dynamics of the periodically forced memristive Chua’s circuit is investigated in this paper. It can be found that the equilibrium point of the circuit switches between a line equilibrium and no equilibrium with the time evolutions, and the circuit exhibits period, chaos and also hyperchaos in a parameter range of the stimulus frequency. Moreover, some abundant interesting nonlinear phenomena including transient chaos, transient hyperchaos and chaotic beats are revealed numerically and verified experimentally.


Memristive Chua’s circuit  Stimulus frequency  Equilibrium Chaotic beats Transient hyperchaos 



This work was supported by the grants from the National Natural Science Foundations of China (Grant No. 51277017) and the Natural Science Foundations of Jiangsu Province (Grant No. BK2012583).


  1. 1.
    Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor based dynamical circuit. Chin. Phys. B 23, 070503 (2014)CrossRefGoogle Scholar
  2. 2.
    Iu, H.H.C., Yu, D.S., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a twin-T notch filter. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1337–1344 (2011)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22, 023136 (2012)CrossRefGoogle Scholar
  4. 4.
    Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviors. Electron. Lett. 46, 228–230 (2010)CrossRefGoogle Scholar
  5. 5.
    Bao, B.C., Xu, J.P., Zhou, G.H., Ma, Z.H., Zou, L.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20, 120502 (2011)CrossRefGoogle Scholar
  6. 6.
    Wang, L.D., Drakakis, E., Duan, S.K., He, P.F., Liao, X.F.: Memristor model and its application for chaos generation. Int. J. Bifurc. Chaos 22, 1250205 (2012)CrossRefGoogle Scholar
  7. 7.
    Ahamed, A.I., Srinivasan, K., Murali, K., Lakshmanan, M.: Observation of chaotic beats in a driven memristive Chua’s circuit. Int. J. Bifurc. Chaos 21, 737–757 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Li, C.B., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73, 1335–1341 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dadras, S., Momeni, H.R., Qi, G.Y.: Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62, 391–405 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cang, S.J., Qi, G.Y., Chen, Z.Q.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bao, B.C., Xu, J.P., Liu, Z., Ma, Z.H.: Hyperchaos from an augmented Lü system. Int. J. Bifurc. Chaos 20, 3689–3698 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bao, B.C., Ma, Z.H., Xu, J.P., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21, 2629–2645 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bao, B.C., Shi, G.D., Xu, J.P., Liu, Z., Pan, S.H.: Dynamics analysis of chaotic circuit with two memristors. Sci. China Technol. Sci. 54, 2180–2187 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Li, C.B., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Li, Q.D., Zeng, H.Z., Yang, X.S.: On hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77, 255–266 (2014)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Leonov, G.A., Kuznetsov, N.V., Kuznetsova, O.A., Seledzhi, S.M., Vagaitsev, V.I.: Hidden oscillations in dynamical systems. Trans. Syst. Control 6, 54–67 (2011)Google Scholar
  19. 19.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20, 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 3008–3021 (2013)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ahamed, A.I., Lakshmanan, M.: Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali–Lakshmanan–Chua circuit. Int. J. Bifurc. Chaos 23, 1350098 (2013)CrossRefGoogle Scholar
  23. 23.
    Cafagna, D., Grassi, G.: Generation of chaotic beats in a modified Chua’s circuit—Part I: dynamic behaviour. Nonlinear Dyn. 44, 91–99 (2006)Google Scholar
  24. 24.
    Cafagna, D., Grassi, G.: Generation of chaotic beats in a modified Chua’s circuit—Part II: circuit design. Nonlinear Dyn. 44, 101–108 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Information Science and EngineeringChangzhou UniversityChangzhouChina
  2. 2.Department of Electronic EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations