Advertisement

Nonlinear Dynamics

, Volume 79, Issue 4, pp 2295–2308 | Cite as

Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria

  • Qingdu LiEmail author
  • Hongzheng Zeng
  • Jing Li
Original Paper

Abstract

This paper studies a four-dimensional (4D) memristive system modified from the 3D chaotic system proposed by Lü and Chen. The new system keeps the symmetry and dissipativity of the original system and has an uncountable infinite number of stable and unstable equilibria. By varying the strength of the memristor, we find rich complex dynamics, such as limit cycles, torus, chaos, and hyperchaos, which can peacefully coexist with the stable equilibria. To explain such coexistence, we compute the unstable manifolds of the equilibria, find that the manifolds create a safe zone for the hyperchaotic attractor, and also find many heteroclinic orbits. To verify the existence of hyperchaos in the 4D memristive circuit, we carry out a computer-assisted proof via a topological horseshoe with two-directional expansions, as well as a circuit experiment on oscilloscope views.

Keywords

Chaos Hyperchaos Manifolds Topological horseshoe Memristive circuits 

Notes

Acknowledgments

We are very grateful to the reviewers for their valuable comments and suggestions. This work is supported in part by the National Natural Science Foundation of China (61104150), and Science Fund for Distinguished Young Scholars of Chongqing (cstc2013jcyjjq40001), and the Science and Technology Project of Chongqing Education Commission (KJ130517).

References

  1. 1.
    Šil’Nikov, L.: A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type. Sbornik Math. 10(1), 91–102 (1970)CrossRefGoogle Scholar
  2. 2.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  3. 3.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  4. 4.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Li, Q.-D., Yang, X.-S.: A new algorithm for computation of two-dimensional unstable manifolds and its applications. Acta Phys. Sin. 59(3), 1416–1422 (2010)zbMATHGoogle Scholar
  7. 7.
    Li, Q., Tan, Y., Yang, F.: A heterogeneous computing algorithm for two-dimensional unstable manifolds of time-continuous systems. Acta Phys. Sin. 60(3), 030206 (2011)zbMATHGoogle Scholar
  8. 8.
    Liu, C.: A novel chaotic attractor. Chaos Solitons Fractals 39(3), 1037–1045 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Qi, G., et al.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos Solitons Fractals 38(3), 705–721 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Wang, Z., et al.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69(1–2), 531–537 (2012)CrossRefGoogle Scholar
  11. 11.
    Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376(2), 102–108 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71(3), 429–436 (2013)CrossRefGoogle Scholar
  13. 13.
    Li, Q., et al.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl 42(11), 1172–1188 (2014)Google Scholar
  14. 14.
    Jafari, S., Sprott, J.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Yang, Q., Chen, G.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18(05), 1393–1414 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Yang, Q., Wei, Z., Chen, G.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurc. Chaos 20(04), 1061–1083 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Huan, S., Li, Q., Yang, X.-S.: Horseshoes in a chaotic system with only one stable equilibrium. Int. J. Bifurc. Chaos 23(1), 1350002 (2013)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264–1272 (2012)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 241(18), 1482–1486 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Leonov, G., Kuznetsov, N., Vagaitsev, V.: Localization of hidden Chua’s attractors. Phys. Lett. A 375(23), 2230–2233 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Li, Q., Zeng, H., Yang, X.-S. : On hidden twin attractors and bifurcation in the chua’s circuit. Nonlinear Dyn 77(1–2), 255–266 (2014)Google Scholar
  22. 22.
    Pham, V.-T., Volos, C., Gambuzza, L.V.: A memristive hyperchaotic system without equilibrium. Sci. World J. 2014, 368986 (2014)CrossRefGoogle Scholar
  23. 23.
    Li, C., et al.:A new piecewise-linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II: Express br. (2014). doi: 10.1109/TCSII.2014.2356912
  24. 24.
    Chua, L.: Memristor, Hodgkin-Huxley, and edge of chaos. Nanotechnology 24(38), 383001 (2013)CrossRefGoogle Scholar
  25. 25.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Chua, L.O.: Memristor-missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  27. 27.
    Strukov, D.B., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  28. 28.
    Kim, H., et al.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRefGoogle Scholar
  29. 29.
    Li, Q., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn 78(2), 1087–1099 (2014)Google Scholar
  30. 30.
    Buscarino, A., et al.: A chaotic circuit based on Hewlett-Packard memristor. Chaos: An interdisciplinary. J. Nonlinear Sci. 22(2), 023136 (2012)MathSciNetGoogle Scholar
  31. 31.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(5), 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Fitch, A.L., et al.: Hyperchaos in a memristor-based modified canonical chua’s circuit. Int. J. Bifurc. Chaos 22(6), 1250133 (2012)CrossRefGoogle Scholar
  33. 33.
    Iu, H.H.C., et al.: Controlling chaos in a memristor based circuit using a Twin-T notch filter. IEEE Trans. Circuits Syst. I-Regul. Pap. 58(6), 1337–1344 (2011)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Bao, B.C., et al.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011)CrossRefGoogle Scholar
  35. 35.
    Leonov, G.A., Kuznetsov, N.V. : Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(01), 1330002 (2013)Google Scholar
  36. 36.
    Leonov, G., et al.: Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)CrossRefGoogle Scholar
  37. 37.
    Bao, B.C., et al.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)CrossRefzbMATHGoogle Scholar
  38. 38.
    Buscarino, A., et al.: Memristive chaotic circuits based on cellular nonlinear networks. Int. J. Bifurc. Chaos 22(3), 1250070 (2012)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Itoh, M., Chua, L.O.: Memristor Hamiltonian circuits. Int. J. Bifurc. Chaos 21(9), 2395–2425 (2011)CrossRefzbMATHGoogle Scholar
  40. 40.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    El-Sayed, A., et al.: Dynamical behavior, chaos control and synchronization of a memristor-based ADVP circuit. Commun. Nonlinear Sci. Numer. Simul. 18(1), 148–170 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Muthuswamy, B., Kokate, P.P.: Memristor-based chaotic circuits. IETE Tech. Rev. 26(6), 417–429 (2009)CrossRefGoogle Scholar
  43. 43.
    Kuznetsov, N., Mokaev, T., Vasilyev, P.: Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1027–1034 (2014)Google Scholar
  44. 44.
    Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17(04), 1079–1107 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Yang, X.S.: Computer assisted verification of chaotic dynamics. Int. J. Bifurc. Chaos 19(4), 1127–1145 (2009)CrossRefzbMATHGoogle Scholar
  46. 46.
    Li, Q.: A topological horseshoe in the hyperchaotic Rossler attractor. Phys. Lett. A 372(17), 2989–2994 (2008). SCI: 293YTCrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Li, Q., Tang, S.: Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Acta Phys. Sin. 62(2), 020510 (2013)Google Scholar
  48. 48.
    Li, Q., Yang, X.-S.: A simple method for finding topological horseshoes. Int. J. Bifurc. Chaos 20(02), 467–478 (2010)CrossRefzbMATHGoogle Scholar
  49. 49.
    Li, Q., Yang, X.-S., Chen, S.: Hyperchaos in a spacecraft power system. Int. J. Bifurc. Chaos 21(06), 1719–1726 (2011)CrossRefzbMATHGoogle Scholar
  50. 50.
    Shen, C., et al.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I 61(3), 854–864 (2014)CrossRefGoogle Scholar
  51. 51.
    Shen, C., et al.: Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via A simple model. IEEE Trans. Circuits Syst. I 61(8), 2380–2389 (2014)CrossRefGoogle Scholar
  52. 52.
    Zhou, J., Lu, J.-A., LÜ, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 51(4), 652–656 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Internet of Things and Networked Control of Ministry of EducationChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.Research Center of Analysis and Control for Complex SystemsChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations