Nonlinear Dynamics

, Volume 79, Issue 2, pp 1235–1255 | Cite as

Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs

Original Paper


Optimal distribution of the actuating torques for a masticatory robot, which is in the form of a redundantly actuated parallel mechanism with two point-contact higher kinematic pairs (HKPs), is investigated in this paper. First, the mechanism of the robot is described, in which the two HKPs are used to model the temporomandibular joints between the condyles and the maxilla in the human masticatory system, and the six kinematic chains are used to model the six groups of the muscles of mastication. Then the inverse dynamics is studied using the Lagrange’s equations of the first type, resulting in the closed-form solution for the actuating torques. Considering the infinite solutions of the inverse dynamics for the actuating torque distribution in the redundantly actuated parallel robot, six optimal criteria that signify the practical performance of the robot are proposed. Finally, two simulations without and with bite force exerting to the teeth, respectively, given that the robot is specified to track a real human mandibular movement are conducted. Results are discussed and it is found that the dynamic performance of the robot varies significantly from one optimal criterion to another.


Redundant actuation Masticatory robot Parallel mechanism Higher kinematic pairs  Inverse dynamics 


  1. 1.
    Xu, W.L., Bronlund, J.E., Potgieter, J., Foster, K.D., Rhrle, O., Pullan, A.J., Kieser, J.A.: Review of the human masticatory system and masticatory robotics. Mech. Mach. Theory 43(11), 1353–1375 (2008)CrossRefMATHGoogle Scholar
  2. 2.
    Lucas, P.W., Lucas, P.W.: The Basic Structure of the Mammalian Mouth Dental Functional Morphology. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  3. 3.
    Hannam, A.G., McMillan, A.S.: Internal organization in the human jaw muscles. Crit. Rev. Oral. Biol. Med. 5(1), 55–89 (1994)Google Scholar
  4. 4.
    Koolstra, J.H., van Eijden, T.M.G.J.: Three-dimensional dynamical capabilities of the human masticatory muscles. J. Biomech. 32(2), 145–152 (1999)CrossRefGoogle Scholar
  5. 5.
    Takanobu, H., Takanishi, A., Ozawa, D., Ohtsuki, K., Ohnishi, M., Okino, A.: Integrated dental robot system for mouth opening and closing training. In: IEEE International Conference on Robotics and Automation, , pp. 1428–1433. Washington (2002)Google Scholar
  6. 6.
    Takanobu, H., Yajima, T., Nakazawa, M., Takanishi, A., Ohtsuki, K., Ohnishi, M.: Quantification of masticatory efficiency with a mastication robot. In: IEEE International Conference on Robotics and Automation, pp. 1635–1640. Leuven, Belgium (1998)Google Scholar
  7. 7.
    Sun, C., Xu, W.L., Bronlund, J.E., Morgenstern, M.: Dynamics and compliance control of a linkage robot for food chewing. IEEE Tran. Ind. Electron. 61(1), 377–386 (2014)CrossRefGoogle Scholar
  8. 8.
    Xu, W.L., Torrance, J.D., Chen, B.Q., Potgieter, J., Bronlund, J.E., Pap, J.S.: Kinematics and experiments of a life-sized masticatory robot for characterizing food texture. IEEE Trans. Ind. Electron. 55(5), 2121–2132 (2008)CrossRefGoogle Scholar
  9. 9.
    Takanobu, H., Maruyama, T., Takanishi, A., Ohtsuki, K., Ohnishi, M.: Mouth opening and closing training with 6-DOF parallel robot. In: IEEE International Conference on Robotics and Automation, pp. 1384–1389. San Francisco (2000)Google Scholar
  10. 10.
    Hayashi, T., Kato, S., Yamada, S., Nakajima, S., Yamada, Y., Kobayashi, H.: A physiological control of chewing-like jaw movement for robotized jaw simulator JSN/2A. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 730–731. Chicago (2000)Google Scholar
  11. 11.
    Zhao, Y.-S., Ren, J.-Y., Huang, Z.: Dynamic loads coordination for multiple cooperating robot manipulators. Mech. Mach. Theory 35(7), 985–995 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Müller, A., Maisser, P.: Generation and application of prestress in redundantly full-actuated parallel manipulators. Multibody Syst. Dyn. 18(2), 259–275 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zhao, Y., Gao, F., Li, W., Liu, W., Zhao, X.: Development of 6-dof parallel seismic simulator with novel redundant actuation. Mechatronics 19(3), 422–427 (2009)CrossRefGoogle Scholar
  14. 14.
    Abedinnasab, M., Vossoughi, G.R.: Analysis of a 6-DOF redundantly actuated 4-legged parallel mechanism. Nonlinear Dyn. 58(4), 611–622 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Shang, W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel manipulator. Nonlinear Dyn. 59(1–2), 61–72 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Shang, W.-W., Cong, S., Ge, Y.: Adaptive computed torque control for a parallel manipulator with redundant actuation. Robotica 30(3), 457–466 (2012)CrossRefGoogle Scholar
  17. 17.
    Shiqing, F., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatron. 9(3), 561–568 (2004)CrossRefGoogle Scholar
  18. 18.
    Nokleby, S.B., Fisher, R., Podhorodeski, R.P., Firmani, F.: Force capabilities of redundantly-actuated parallel manipulators. Mech. Mach. Theory 40(5), 578–599 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Zheng, Y.F., Luh, J.Y.S.: Optimal load distribution for two industrial robots handling a single object. In: IEEE International Conference on Robotics and Automation, pp. 344–349. Philadelphia (1988)Google Scholar
  20. 20.
    Nahon, M.A., Angeles, J.: Force optimization in redundantly-actuated closed kinematic chains. In: IEEE International Conference on Robotics and Automation, pp. 951–956. Scottsdale (1989)Google Scholar
  21. 21.
    Liu, J., Li, Y., Zhang, Y., Gao, Q., Zuo, B.: Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dyn. 76(3), 1737–1751 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mesnard, M., Coutant, J.C., Aoun, M., Morlier, J., Cid, M., Caix, P.: Relationships between geometry and kinematic characteristics in the temporomandibular joint. Comput. Methods Biomech. Biomed. Eng. 15(4), 393–400 (2011)Google Scholar
  23. 23.
    Siegler, S., Hayes, R., Nicolella, D., Fielding, A.: A technique to investigate the three-dimensional kinesiology of the human temporomandibular joint. J. Prosthet. Dent. 65(6), 833–839 (1991)CrossRefGoogle Scholar
  24. 24.
    Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)Google Scholar
  25. 25.
    Shang, W.-W., Cong, S.: Motion control of parallel manipulators using acceleration feedback. IEEE Trans. Control Syst. Technol. 22(1), 314–321 (2014)CrossRefGoogle Scholar
  26. 26.
    Xu, W., Bronlund, J.E.: Mastication Robots. Springer, Berlin (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of AucklandAucklandNew Zealand
  2. 2.Department of MechatronicsNational University of Defense TechnologyChangshaChina

Personalised recommendations