Nonlinear Dynamics

, Volume 79, Issue 2, pp 1099–1114 | Cite as

RETRACTED ARTICLE: Cascade controller design and stability analysis in FES-aided upper arm stroke rehabilitation robotic system

  • Wenkang Xu
  • Chenxiao CaiEmail author
  • Yun Zou
Original Paper


A three-dimensional stroke rehabilitation system is studied which combines the functional electrical stimulation (FES) with a robotic support to provide assistance to stroke patients who are required to perform upper extremity trajectory-tracking exercises with their residual voluntary efforts. When not enough voluntary efforts can be supplied, FES-based assistance is provided by applying electrical stimulation to the actuated muscles. In order to realize more rapid and accurate control of trajectory tracking, a new cascade control scheme is developed for the combined muscle and supported arm system. The stability of the cascade-controlled system and the internal stability of the unactuated dynamics are rigorously studied. The parameter optimal iterative learning control is then employed to further improve the trajectory-tracking accuracy of the cascade-based robotic system. Performance evaluation results confirm the effectiveness of the proposed method for upper arm trajectory-tracking-oriented stroke rehabilitation.


Cascade control Iterative learning control Stroke rehabilitation Exoskeleton robot Internal stability 



The authors are grateful to the handling editor and reviewers for their valuable comments and suggestions. Prof. Eric Rogers, Dr. Chu Bing and Dr. Christopher Freeman at University of Southampton are highly appreciated for their stimulating discussions and judicious suggestions.


  1. 1.
    Van der Putten, J.J.M.F., Hobart, J.C., Freeman, J.A., Thompson, A.J.: Measuring change in disability after inpatient rehabilitation: comparison of the responsiveness of the barthel index and the functional independence measure. J. Neurol. Neurosurg. Psychiatry 66, 480–484 (1999)CrossRefGoogle Scholar
  2. 2.
    Hughes, A.M., Freeman, C., Burridge, J.H., Chappell, P.H., Lewin, P.L., Rogers, E.: Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabil. Neural Repair 23, 559–568 (2009)CrossRefGoogle Scholar
  3. 3.
    Hendricks, H.T., van Limbeek, J., Geurts, A.C., Zwarts, M.J.: Motor recovery after stroke: a systematic review of the literature. Arch. Phys. Med. Rehab. 83, 1629–1637 (2002)CrossRefGoogle Scholar
  4. 4.
    National Audit Office: Reducing brain damage: faster access to better stroke care. HC 452 [Online].
  5. 5.
    Krebs, H.I., Palazzolo, J.J., Dipietro, L., Volpe, B.T., Hogan, N.: Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robots. 15, 7–20 (2003)CrossRefGoogle Scholar
  6. 6.
    Mohammad, M.F., Reza, B.: Impedance control of robots using voltage control strategy. Nonlinear Dyn. 74, 277–286 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M.C., Dario, P., Minuco, G.: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper extremity. Neurorehabil. Neural Repair 22, 494–504 (2002)Google Scholar
  8. 8.
    Freeman, C.T., Rogers, E., Hughes, A.M., Burridge, J.H., Meadmore, K.L.: Iterative learning control in health care: electrical stimulation and robotic-assisted upper-limb stroke rehabilitation. IEEE Control Syst. 32, 18–53 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Kroon, J.R., van der Lee, J.H., Izerman, M.J., Lankhorst, G.J.: Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin. Rehabil. 16, 350–360 (2002)CrossRefGoogle Scholar
  10. 10.
    Burridge, J.H., Ladouceur, M.: Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation 4, 147–154 (2001)CrossRefGoogle Scholar
  11. 11.
    Schmidt, R.A., Lee, T.D.: Motor Learning in Motor Control and Learning: A Behavioral Emphasis, Part 3. Human Kinetics, pp. 261–285. Human Kinetics Publishers, Champaign, IL (1999)Google Scholar
  12. 12.
    Rushton, D.N.: Functional electrical stimulation and rehabilitation—an hypothesis. Med. Eng. Phys. 25, 75–78 (2003)CrossRefGoogle Scholar
  13. 13.
    Hunt, K.J., Munih, M., de Donaldson, N.: Feedback control of unsupported standing in paraplegia, part I: optimal control approach. IEEE Trans. Rehabil. Eng. 5, 331–340 (1997)CrossRefGoogle Scholar
  14. 14.
    Previdi, F., Schauer, T., Savaresi, S.M., Hunt, K.J.: Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach. IEEE Trans. Control Syst. Technol. 12, 176–182 (2004)CrossRefGoogle Scholar
  15. 15.
    Watanabe, T., Iibuchi, K., Kurosawa, K., Hoshimiya, N.: A method of multichannel PID control of two-degree-of-freedom wrist joint movements by functional electrical stimulation. Syst. Comput. Jpn. 34, 319–328 (2003)Google Scholar
  16. 16.
    Zhang, D., Guan, T.H., Widjaja, F., Ang, W.T.: Functional electrical stimulation in rehabilitation engineering: a survey. In: 1st International Convention on Rehabilitation Engineering and Assistive Technology, Singapore (2007)Google Scholar
  17. 17.
    Baker, L.L., Mcneal, D.R., Benton, L.A., Bowman, B.R., Waters, R.L.: Neuromuscular Electrical Stimulation: A Practical Guide, 3rd edn. Rancho Los Amigos Medical Center, California, USA (1993)Google Scholar
  18. 18.
    Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control: a learning based method for high-performance tracking. IEEE Control Syst. 26, 96–114 (2006)CrossRefGoogle Scholar
  19. 19.
    Moore, K.L.: Iterative Learning Control for Deterministic Systems. Springer, Berlin (1992)Google Scholar
  20. 20.
    Freeman, C., Hughes, A.M., Burridge, J., Chappell, P., Lewin, P., Rogers, E.: Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17, 368–381 (2009)CrossRefGoogle Scholar
  21. 21.
    Freeman, C., Lewin, P.L., Rogers, E.: Further results on the experimental evaluation of iterative learning control algorithms for non-minimum phase plants. Int. J. Control 80, 569–582 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Freeman, C., Tong, D., Meadmore, K., Hughes, A., Rogers, E., Burridge, J.: FES based rehabilitation of the upper limb using input/output linearization and ILC. In: American Control Conference, Montreal, pp. 27–29 (2012)Google Scholar
  23. 23.
    Xu, W.K., Chu, B., Rogers, E.: Cascade based iterative learning control of robotic-assisted upper extremity stroke rehabilitation. In: IEEE International Conference on Decision and Control, Florance, pp. 6688–6693 (2013)Google Scholar
  24. 24.
    Xu, W., Chu, B., Rogers, E.: Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue. Control Eng. Pract. 31, 63–72 (2014)Google Scholar
  25. 25.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2004)Google Scholar
  26. 26.
    Slotine, J.J., Li, W.P.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)zbMATHGoogle Scholar
  27. 27.
    Lum, P.S., Burgar, C.G., Shor, P.C.: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 186–194 (2004)CrossRefGoogle Scholar
  28. 28.
    Baratta, R., Solomonow, M.: The dynamic response model of nine different skeletal muscles. IEEE Trans. Biomed. Eng. 37, 243–251 (1990)CrossRefGoogle Scholar
  29. 29.
    Le, F., Markovsky, I., Freeman, C.T., Rogers, E.: Identification of electrically stimulated muscle models of stroke patients. Control Eng. Pract. 18, 396–407 (2010)CrossRefGoogle Scholar
  30. 30.
    Freeman, C., Tong, D., Meadmore, K., Cai, Z., Rogers, E., Hughes, A.M., Burridge, J.H.: Phase-lead iterative learning control algorithms for functional electrical stimulation based stroke rehabilitation. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng 225, 850–859 (2011)CrossRefGoogle Scholar
  31. 31.
    Sage, H.G., De Mathelin, M.F., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72, 1498–1522 (1999)Google Scholar
  32. 32.
    Mohammad, M.F.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67, 2549–2559 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Mohammad, R.S., Mohammad, H.K.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74, 467–478 (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Xu, W.K., Cai, C.X., Zou, Y.: Neural-network-based robot time-varying force control with uncertain manipulator-environment system. Trans. Inst. Meas. Control (2014). doi: 10.1177/0142331214528971.
  35. 35.
    Hassan, K.K.: Nonlinear systems. Prentice Hall, New Jersey (2002)zbMATHGoogle Scholar
  36. 36.
    Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1989)CrossRefzbMATHGoogle Scholar
  37. 37.
    Owens, D.H., Hatonen, J.J., Daley, S.: Robust monotone gradient-based discrete-time iterative learning control. Int. J. Robust Nonlinear Control 19, 634–661 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Owens, D.H., Hatonen, J.J.: Iterative learning control and optimization paradigm. Annu. Rev. Control 29, 57–70 (2005)CrossRefGoogle Scholar
  39. 39.
    Meadmore, K.L., Hughes, A.M., Freeman, C., Cai, Z., Tong, D., Burridge, J.H., Rogers, E.: Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke. J. Neuroeng. Rehabil. 9, 32 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjing China

Personalised recommendations