Nonlinear Dynamics

, Volume 79, Issue 1, pp 731–741 | Cite as

Finite-time stabilization and synchronization of complex dynamical networks with nonidentical nodes of different dimensions

  • Manchun TanEmail author
  • Wenxiu Tian
Original Paper


A class of complex dynamical networks, in which the nodes have different state dimensions, is investigated in this paper. Since the networks constructed by nonidentical nodes with different state dimensions may exhibit different dynamical behavior, the appropriate control strategies are proposed for the stabilization and synchronization of such complex networks. By employing suitable controllers, sufficient conditions for finite-time stabilization and synchronization are derived based on the finite-time stability theory. It is noticed that the coupling configuration matrix is not necessary to be symmetric or irreducible, and the inner coupling matrix need not be symmetric. Finally, numerical examples are presented to show the effectiveness of the proposed control methods.


Complex dynamical network  Finite-time Stabilization Synchronization Nonidentical node 



The research is supported by grants from the Natural Science Foundation of Guangdong Province in China (No. 9151001003000005), and the Fundamental Research Funds for the Central Universities (No. 21612443), and the National Natural Science Foundation of China (No.11471083).


  1. 1.
    Wang, X.: Complex networks: topology, dynamics and synchronization. Int. J. Bifurcation Chaos 12, 885–916 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Duan, Z., Wang, J., Chen, G., Lin, H.: Stability analysis and decentralized control of a class of complex dynamical networks. Automatica 44, 1028–1035 (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Tan, M., Zhang, Y.: New sufficient conditions for global asymptotic stability of Cohen–Grossberg neural networks with time-varying delays. Nonlinear Anal.: Real World Appl. 10, 2139–2145 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Wang, Z., Zhang, H.: Synchronization stability in complex interconnected neural networks with nonsymmetric coupling. Neurocomputing 108, 84–92 (2013)CrossRefGoogle Scholar
  6. 6.
    Zheng, C., Shan, Q., Zhang, H.: On stabilization of stochastic Cohen–Grossberg neural networks with mode-dependent mixed time-delays and markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 24, 800–811 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhang, Y., Guo, D., Li, Z.: Common nature of learning between back-propagation and Hopfield-type neural networks for generalized matrix inversion with simplified models. IEEE Trans. Neural Netw. Learn. Syst. 24, 579–592 (2013)CrossRefGoogle Scholar
  8. 8.
    Huang, T., Yang, Z., Li, C.: Theory and applications of complex networks. Math. Probl. Eng. 315059 (2014)Google Scholar
  9. 9.
    Chen, J., Lu, J., Zhou, J.: Topology identification of complex networks from noisy time series using ROC curve analysis. Nonlinear Dyn. 75, 761–768 (2014)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Anzo, A., Barajas-Ramirez, J.: Synchronization in complex networks under structural evolution. J. Frankl. Inst. 351, 358–372 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE. Trans. Circuits Syst. I 51, 2074–2087 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Li, C., Feng, G., Liao, X.: Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. II 54, 1019–1023 (2007)CrossRefGoogle Scholar
  13. 13.
    Lee, T., Park, J., Ji, D., Kwon, O., Lee, S.: Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control. Appl. Math. Comput. 218, 6469–6481 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Du, H., Shi, P., Lu, N.: Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal.: Real World Appl. 14, 1182–1190 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Zheng, Z., Tan, M., Wang, Q.: Hybrid synchronization of two delayed systems with uncertain parameters. Adv. Neural Netw. 7367, 285–292 (2012)Google Scholar
  16. 16.
    Wu, Z., Fu, X.: Cluster projective synchronization between community networks with nonidentical nodes. Phys. A 391, 6190–6198 (2012)CrossRefGoogle Scholar
  17. 17.
    Wu, X., Lu, H.: Generalized function projective (lag, anticipated and complete) synchronization between two different coupled complex with nonidentical nodes. Commun. Nonlinear Sci. Numer. Simul. 17, 3005–3021 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Li, K., He, E., Zeng, Z., Chi, K.: Generalized projective synchronization of two coupled complex networks of different sizes. Chin. Phys. B. 22, 070504 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhao, J., Hill, D., Liu, T.: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE. Trans. Circuits Syst.I 58, 584–594 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Cai, S., He, Q., Hao, J., Liu, Z.: Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes. Phys. Lett. A 374, 2539–2550 (2010)Google Scholar
  21. 21.
    Pereira, T., Eroglu, D., Bagci, G.: Connectivity-driven coherence in complex networks. Phys. Rev. Lett. 110, 234103 (2013)CrossRefGoogle Scholar
  22. 22.
    Belykh, I., Belykh, V., Nevidin, K., Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13, 165–178 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Du, H.: Function projective synchronization in drive-response dynamical networks with nonidentical nodes. Chaos Solitons Fractals 44, 510–514 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49, 359–374 (2013)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Wei, Z., Moroz, I., Liu, A.: Degenerate Hopf bifurcations, hidden attractors and control in the extended Sprott E system with only one stable equilibrium. Turk. J. Math. 38, 672–687 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Tanaka, K., Wang, H.: Fuzzy control of chaotic systems using LIMs: regulation, synchronization and chaos model following. IEEE World Congr. Fuzzy Syst. Proc. 1, 434–439 (1988)Google Scholar
  27. 27.
    Hu, M., Xu, Z.: Adaptive feedback controller for projective synchronization. Nonlinear Anal.: RWA 9, 1253–1260 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lu, W., Li, X., Rong, Z.: Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica 46, 116–121 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Wu, W., Zhou, W., Chen, Q.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I 56, 829–839 (2009)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Zhou, J., Xiang, L., Liu, Z.: Synchronization in complex delayed dynamical networks via impulsive control. Phys. A 384, 684–692 (2007)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Zhang, Q., Lu, J., Zhao, J.: Impulsive synchronization of general continuous and discrete-time complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 15, 1063–1070 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Mei, J., Jiang, M., Xu, W., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18, 2462–2478 (2013)Google Scholar
  33. 33.
    Aghababa, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model 35, 3080–3091 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Wei, Z.: Synchronization of coupled nonidentical fractional-order hyperchaotic systems. Discret. Dyn. Nat. Soc. 2011, 430724 (2011)CrossRefGoogle Scholar
  35. 35.
    Moulay, E., Dambrine, M., Yeganefar, N., Perruquetti, W.: Finite-time stability and stabilization of time-delay systems. Syst. Control Lett. 57, 561–566 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Sanjay, P., Dennis, S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38, 751–766 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Yang, X., Cao, J.: Finite-time stochastic synchronization of complex networks. Appl. Math. Model. 34, 3631–3641 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Shen, J., Cao, J.: Finite-time synchronization of coupled neural networks via discontinuous controllers. Cogn. Neurodyn. 5, 373–385 (2011)CrossRefGoogle Scholar
  39. 39.
    Sun, Y., Li, W., Ruan, J.: Finite-time generalized outer synchronization between two different complex networks. Commun. Theor. Phys. 58, 697–703 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313–2327 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Wang, Y., Fan, Y., Wang, Q., Zhang, Y.: Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers. IEEE Trans. Circuits Syst. I 59, 1786–1795 (2012)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Fan, Y., Wang, Y., Zhang, Y., Wang, Q.: The synchronization of complex dynamical networks with similar nodes and coupling time-delay. Appl. Math. Comput. 219, 6719–6728 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Dai, H., Jia, L., Zhang, Y.: Adaptive generalized matrix projective lag synchronization between two different complex networks with nonidentical nodes and different dimensions. Chin. Phys. B. 21, 120508 (2012)CrossRefGoogle Scholar
  44. 44.
    Dai, H., Si, G., Zhang, Y.: Adaptive generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimensions. Nonlinear Dyn. 74, 629–648 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Wei, Z., Tang, Y., Chen, H., Pehlivan, I.: Adaptive reduced-order function projective synchronization and circuit design of hyperchaotic DLE with no equilibria. Optoelectron. Adv. Mat. 7, 984–999 (2013)Google Scholar
  46. 46.
    Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  47. 47.
    Liu, H., Shen, Y., Zhao, X.: Finite-time stabilization and boundedness of switched linear system under state-dependent switching. J. Frankl. I 350, 541–555 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MathematicsJinan UniversityGuangzhouChina

Personalised recommendations