Nonlinear Dynamics

, Volume 79, Issue 1, pp 455–464 | Cite as

Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients

Original Paper

Abstract

Using the Lie symmetry approach, the authors have examined exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. The method reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations for all optimal subgroups. The system of ordinary differential equations is further studied in general to obtain exact and numerical solutions. Several new physically important families of exact and numerical solutions are derived.

Keywords

CSP equation Lie symmetry analysis Exact solutions Numerical solutions 

References

  1. 1.
    Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Physica D 196, 90–105 (2004)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Chung, Y., Jones, C.K.R.T., Schäfer, T., Wayne, C.E.: Ultra-short pulse in linear and nonlinear media. Nonlinearity 18, 1351–1374 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)MathSciNetGoogle Scholar
  4. 4.
    Jiang, B., Wu, J., Povinelli, L.A.: The origin of spurious solutions in computational electromagnetics. J. Comput. Phys. 125, 104–123 (1996)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brunelli, J.C.: The short pulse hierarchy. J. Math. Phys. 46, 123507 (9 pp) (2005)Google Scholar
  6. 6.
    Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the short pulse equation. Nonlinear Anal. 71, 2126–2133 (2009)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Feng, B.F., Maruno, K., Ohta, Y.: Integrable discretizations of the short pulse equation. J. Phys. A: Math. Theor. 43, 085203 (14 pp) (2010)Google Scholar
  8. 8.
    Feng, B.F.: An integrable coupled short pulse equation. J. Phys. A: Math. Theor. 45, 085202 (14 pp) (2012)Google Scholar
  9. 9.
    Brunelli, J.C., Sakovich, S.: Hamiltonian integrability of two-component short pulse equations. J. Math. Phys. 54, 012701 (12 pp) (2013)Google Scholar
  10. 10.
    Kumar, V., Gupta, R.K., Jiwari, R.: Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation. Chin. Phys. B 22, 050201 (7 pp) (2013)Google Scholar
  11. 11.
    Helfrich, K.R., Melville, W.K., Miles, J.W.: On interfacial solitary waves over variable topography. J. Fluid Mech. 149, 305–317 (1984)Google Scholar
  12. 12.
    Mowafy, A.E., El-Shewy, E.K., Moslem, W.M., Zahran, M.A.: Effect of dust charge fluctuation on the propagation of dust-ion acoustic waves in inhomogeneous mesospheric dusty plasma. Phys. Plasmas 15, 073708 (9 pp) (2008)Google Scholar
  13. 13.
    Meng, G.Q., Gao, Y.T., Yu, X., Shen, Y.J., Qin, Y.: Painlevé analysis, Lax pair, Bäcklund transformation and multi-soliton solutions for a generalized variable-coefficient KdV-mKdV equation in fluids and plasmas. Phys. Scr. 85, 055010 (12pp) (2012)Google Scholar
  14. 14.
    Kumar, V., Gupta, R.K., Jiwari, R.: Painlevé analysis, Lie symmetries and exact solutions for variable coefficients Benjamin–Bona–Mahony–Burger (BBMB) equation. Commun. Theor. Phys. 60, 175–182 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Singh, K., Gupta, R.K.: Lie symmetries and exact solutions of a new generalized Hirota-Satsuma coupled KdV system with variable coefficients. Int. J. Eng. Sci. 44, 241–255 (2006)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gupta, R.K., Bansal, A.: Similarity reductions and exact solutions of generalized Bretherton equation with time dependent coefficients. Nonlinear Dyn. 71, 1–12 (2013)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kumar, S., Singh, K., Gupta, R.K.: Painlevé analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer–Kaup equations. Commun. Nonlinear Sci. Numer. Simulat. 17, 1529–1541 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Gupta, R.K., Bansal, A.: Painlevé analysis, Lie symmetries and invariant solutions of potential Kadomstev–Petviashvili equation with time dependent coefficients. Appl. Math. Comput. 219, 5290–5302 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)CrossRefMATHGoogle Scholar
  20. 20.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)MATHGoogle Scholar
  21. 21.
    Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)CrossRefMATHGoogle Scholar
  22. 22.
    Yunqing, Y., Yong, C.: Prolongation structure of the equation studied by Qiao. Commun. Theor. Phys. 56, 463–466 (2011)CrossRefGoogle Scholar
  23. 23.
    Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin–Bona–Mahoney equation. Appl. Math. Lett. 26, 376–381 (2013)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Khalique, C.M., Adem, K.R.: Exact solutions of the (2+1)-dimensional Zakharov–Kuznetsov modified equal width equation using Lie group analysis. Math. Comput. Model. 54, 184–189 (2011)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Mathematics and Computer ApplicationsThapar UniversityPatialaIndia
  2. 2.Department of MathematicsD.A.V. College PundariKaithalIndia
  3. 3.Department of MathematicsIndian Institute of Technology, RoorkeeRoorkeeIndia

Personalised recommendations