Advertisement

Nonlinear Dynamics

, Volume 79, Issue 1, pp 427–436 | Cite as

Sech-type and Gaussian-type light bullet solutions to the generalized (3\(+\)1)-dimensional cubic-quintic Schrödinger equation in \(\varvec{\mathcal {PT}}\)-symmetric potentials

  • Yi-Xiang Chen
Original Paper

Abstract

We study two kinds of the generalized (3\(+\)1)-dimensional cubic-quintic Schrödinger equation in \(\mathcal {PT}\)-symmetric potentials and obtain two families (sech-type and Gaussian-type) and four kinds of analytical light bullet (LB) solutions. The stability of these solutions is tested by the linear stability analysis and the direct numerical simulation. Results imply that sech-type LB solutions are unstable for all parameters only in the extended Rosen–Morse potentials. Sech-type and Gaussian-type LB solutions are both stable below some thresholds for the imaginary part of other \(\mathcal {PT}\)-symmetric potentials in the defocusing cubic and focusing quintic medium, while they are always unstable for all parameters in other media. Moreover, we discuss the broadened and compressed behaviors of LBs in inhomogeneous hyperbolic system and periodic amplification system.

Keywords

Light bullets Nonlinear Schrödinger equations  Cubic-quintic nonlinearity Broadened and compressed behaviors 

Notes

Acknowledgments

This work was supported by Zhejiang Province welfare project (Grant No. 2014C32006), the higher school visiting scholar development project (Grant No. FX2013103), the Zhejiang University of Media and Communications Research Fund (Grant No. ZC12XJY003) and National Natural Science Foundation of China (Grant No. 11374254).

References

  1. 1.
    Dai, C.Q., Zhang, J.F.: Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background. Nonlinear Dyn. 73, 2049–2057 (2013)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Wu, X.F., Hua, G.S., Ma, Z.Y.: Novel rogue waves in an inhomogeneous nonlinear medium with external potentials. Commun. Nonlinear Sci. Numer. Simul. 18, 3325–3336 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, Y.Y., Dai, C.Q.: Elastic interactions between multi-valued foldons and anti-foldons for the (2+1)-dimensional variable coefficient Broer–Kaup system in water waves. Nonlinear Dyn. 74, 429–438 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dai, C.Q., Wang, Y.: Three-dimensional structures of the spatiotemporal nonlinear Schrodinger equation with power-law nonlinearity in PT-symmetric potentials. PloS one 9(7), e100484 (2014)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.: Optical solitons and complextions of the Schrodinger–Hirota equation. Opt. Laser Technol. 44, 2265–2269 (2012)CrossRefGoogle Scholar
  7. 7.
    Biswas, A., Khan, K., Rahman, A., Yildirim, A., Hayat, T., Aldossary, O.M.: Bright and dark optical solitons in birefringent fibers with hamiltonian perturbations and kerr law nonlinearity. J. Optoelectron. Adv. Mater. 14, 571–576 (2012)Google Scholar
  8. 8.
    Biswas, A., Milovic, D., Savescu, M., Mahmood, M.F., Khan, K.R., Kohl, R.: Optical soliton perturbation in nanofibers with improved nonlinear Schrodinger’s equation by semi-inverse variational principle. J. Nonlinear Opt. Phys. Mater. 12, 1250054 (2012)CrossRefGoogle Scholar
  9. 9.
    Biswas, A., Khan, K.R., Milovic, D., Belic, M.: Bright and dark solitons in optical metamaterials. Optik 125, 3299–3302 (2014)CrossRefGoogle Scholar
  10. 10.
    Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 442–459 (2014)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical soliton perturbation with spatio-temporal dispersion in parabolic and dual-power law media by semi-inverse variational principle (2014). doi: 10.1016/j.ijleo.2014.04.024
  12. 12.
    Zhong, W.P., Belić, M.R., Huang, T.W.: Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets. Phys. Rev. A 88, 033824 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhong, W.P., Belić, Zhang, Y.Q., Huang, T.W.: Accelerating Airy–Gauss–Kummer localized wave packets. Ann. Phys. 340, 171–178 (2014)CrossRefGoogle Scholar
  14. 14.
    Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Analytical spatiotemporal localizations for the generalized (3 + 1)-dimensional nonlinear Schrodinger equation. Opt. Lett. 35, 1437 (2010)Google Scholar
  15. 15.
    Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B Quantum Semiclass. Opt. 81, R53–R72 (2005)CrossRefGoogle Scholar
  16. 16.
    Zhong, W.P., Belić, M.R., Assanto, G., Malomed, B.A., Huang, T.W.: Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient. Phys. Rev. A 84, 043801 (2011)CrossRefGoogle Scholar
  17. 17.
    Xu, S.L., Belić, M.R.: Light bullets in spatially modulated Laguerre–Gauss optical lattices. J. Opt. Soc. Am. B 30, 2715–2721 (2013)CrossRefGoogle Scholar
  18. 18.
    Zhong, W.P., Belić, M.R., Huang, T.W.: Three-dimensional spatiotemporal accessible solitons in a PT-symmetric potential. J. Opt. Soc. Korea 16, 425 (2012)CrossRefGoogle Scholar
  19. 19.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632 (2007)CrossRefGoogle Scholar
  21. 21.
    Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in P T symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)CrossRefGoogle Scholar
  22. 22.
    Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  23. 23.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)CrossRefGoogle Scholar
  24. 24.
    Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)CrossRefGoogle Scholar
  25. 25.
    Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)CrossRefGoogle Scholar
  26. 26.
    Achilleos, V., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzales, R.: Dark solitons and vortices in PT-symmetric nonlinear media from spontaneous symmetry breaking to nonlinear PT phase transitions. Phys. Rev. A 86, 013808 (2012)CrossRefGoogle Scholar
  27. 27.
    Zhong, W.P., Belić, M.R., Huang, T.W.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)CrossRefGoogle Scholar
  28. 28.
    Midya, B., Roychoudhury, R.: Nonlinear localized modes in PT-symmetric Rosen-Morse potential wells. Phys. Rev. A 87, 045803 (2013)CrossRefGoogle Scholar
  29. 29.
    Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose-Einstein condensates in standing waves: the cubic nonlinear Schrodinger equation with a periodic potential. Phys. Rev. Lett. 86, 1402–1405 (2001)CrossRefGoogle Scholar
  30. 30.
    Bogatyrev, V.A., Bubnov, M.M., Dianov, E.M., et al.: Dispersion management for wavelength-division-multiplexed soliton transmission. J. Lightwave Technol. 9, 561 (1991)CrossRefGoogle Scholar
  31. 31.
    Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion management. IEEE J. Sel. Top. Quant. Electron. 8, 418–431 (2002)CrossRefGoogle Scholar
  32. 32.
    Biswas, A., Mirzazadeh, M., Eslami, M.: Soliton solution of generalized chiral nonlinear schrodinger’s equation with time-dependent coefficients. Acta Phys. Polonica B 45, 849–866 (2014)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Dai, C.Q., Zhu, H.P.: Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrodinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)Google Scholar
  34. 34.
    Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)CrossRefGoogle Scholar
  35. 35.
    Xu, X.J., Dai, C.Q.: Nonlinear tunnelling of spatial solitons in PT-symmetric potential. Opt. Commun. 318, 112–119 (2014)CrossRefGoogle Scholar
  36. 36.
    Dai, C.Q., Wang, Y.Y.: Nonautonomous solitons in parity-time symmetric potentials. Opt. Commun. 315, 303–309 (2014)CrossRefGoogle Scholar
  37. 37.
    Jiang, L.H., Wu, H.Y.: Spatiotemporal self-similar waves for the (3 + 1)-dimensional inhomogeneous cubic-quintic nonlinear medium. Opt. Commun. 284, 2022–2026 (2011)CrossRefGoogle Scholar
  38. 38.
    Loomba, S., Kaur, H.: Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation. Phys. Rev. E 88, 062903 (2013)CrossRefGoogle Scholar
  39. 39.
    Hao, R., Li, L., Li, Z., Xue, W., Zhou, G.: A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients. Opt. Commun. 236, 79–86 (2004)CrossRefGoogle Scholar
  40. 40.
    Konar, S., Mishra, M., Jana, S.: Dispersion-managed optical solitons with higher-order nonlinearity. Fiber Integr. Opt. 24, 537–548 (2005)CrossRefGoogle Scholar
  41. 41.
    Belyaeva, T.L., Serkin, V.N., Agüero, M., Hernandez-Tenorio, A.C., Kovachev, L.M.: Hidden features of the soliton adaptation law to external potentials: Optical and matter-wave 3D nonautonomous soliton bullets. Laser Phys. 21, 258–263 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Electronics InformationZhejiang University of Media and CommunicationsHangzhouPeople’s Republic of China

Personalised recommendations