Nonlinear Dynamics

, Volume 78, Issue 4, pp 2811–2821 | Cite as

Energy efficiency in friction-based locomotion mechanisms for soft and hard robots: slower can be faster

  • Xuance Zhou
  • Carmel Majidi
  • Oliver M. O’Reilly
Original Paper


Many recent designs of soft robots and nano-robots feature locomotion mechanisms that cleverly exploit slipping and sticking phenomena. These mechanisms have many features in common with peristaltic locomotion found in the animal world. The purpose of the present paper is to examine the energy efficiency of a locomotion mechanism that exploits friction. With the help of a model that captures most of the salient features of locomotion, we show how locomotion featuring stick-slip friction is more efficient than a counterpart that only features slipping. Our analysis also provides a framework to establish how optimal locomotion mechanisms can be selected.


Hybrid dynamical systems Piecewise-smooth dynamical systems Stick-slip friction Anchoring Peristaltic locomotion Worm-like motion Robotics 



Support from a Defense Advanced Research Projects (DARPA) 2012 Young Faculty Award to Carmel Majidi is gratefully acknowledged. Xuance Zhou is grateful for the support of a Anselmo Macchi Fellowship for Engineering Graduate Students and a J. K. Zee Fellowship. The authors also take this opportunity to thank an anonymous reviewer for their constructive criticisms.


  1. 1.
    Chernous’ko, F.L.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66(1), 1–7 (2002). doi: 10.1016/S0021-8928(02)00002-3 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Denny, M.: The role of gastropod pedal mucus in locomotion. Nature 285(1), 160–161 (1980). doi: 10.1038/285160a0 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Donald, B., Levey, C., McGray, C., Rus, D., Sinclair, M.: Power delivery and locomotion of untethered microactuators. J. Microelectromech. Syst. 12(6), 947–959 (2003). doi: 10.1109/JMEMS.2003.821468 CrossRefGoogle Scholar
  4. 4.
    Driesen, W.: Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle: Application to mobile microrobots. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2008).
  5. 5.
    Driesen, W., Rida, A., Breguet, J.M., Clavel, R.: Friction based locomotion module for mobile Mems robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 3815–3820 (2007). doi: 10.1109/IROS.2007.4399321
  6. 6.
    Edeler, C., Meyer, I., Fatikow, S.: Modeling of stick-slip micro-drives. J. Micro-Nano Mechatron. 6(3–4), 65–87 (2011). doi: 10.1007/s12213-011-0034-9 CrossRefGoogle Scholar
  7. 7.
    Elder, H.Y.: Peristaltic mechanisms. In: Elder, H.Y., Trueman, E.R. (eds.) Aspects of Animal Movement, vol. 5, pp. 71–92. Society for Experimental Biology, Seminar Series, Cambridge University Press, Cambridge, UK (1985)Google Scholar
  8. 8.
    Frutiger, D., Kratochvil, B., Nelson, B.: MagMites—Microrobots for wireless microhandling in dry and wet environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1112–1113 (2010). doi: 10.1109/ROBOT.2010.5509678
  9. 9.
    Li, H., Furuta, K., Chernousko, F.: Motion generation of the Capsubot using internal force and static friction. In: 45th IEEE Conference on Decision and Control, pp. 6575–6580 (2006). doi: 10.1109/CDC.2006.377472
  10. 10.
    Majidi, C.: Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1(P), 5–11 (2013). doi: 10.1089/soro.2013.000
  11. 11.
    McNeil Alexander, R.: Principles of Animal Locomotion. Princeton University Press, Princeton (2003)Google Scholar
  12. 12.
    Murthy, R., Das, A., Popa, D.O.: ARRIpede: a stick-slip micro crawler/conveyor robot constructed via 2.5D MEMS assembly. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008, pp. 34–40 (2008). doi: 10.1109/IROS.2008.4651181
  13. 13.
    Murthy, R., Das, A., Popa, D.O., Stephanou, H.E.: ARRIpede: An assembled die-scale microcrawler. Adv. Robot. 25(8), 965–990 (2011). doi: 10.1163/016918611X568602 CrossRefGoogle Scholar
  14. 14.
    Nagy, Z., Frutiger, D., Leine, R., Glocker, C., Nelson, B.: Modeling and analysis of wireless resonant magnetic microactuators. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1598–1603 (2010). doi: 10.1109/ROBOT.2010.5509260
  15. 15.
    Nagy, Z., Leine, R., Frutiger, D., Glocker, C., Nelson, B.: Modeling the motion of microrobots on surfaces using nonsmooth multibody dynamics. IEEE Trans. Robot. 28(5), 1058–1068 (2012). doi: 10.1109/TRO.2012.2199010 CrossRefGoogle Scholar
  16. 16.
    Nakazato, Y., Sonobe, Y., Toyama, S.: Development of an in-pipe micro mobile robot using peristalsis motion. J. Mech. Sci. Technol. 24(1), 51–54 (2010). doi: 10.1007/s12206-009-1174-x
  17. 17.
    Pawashe, C., Floyd, S., Sitti, M.: Modeling and experimental characterization of an untethered magnetic micro-robot. Int. J. Robot. Res. 28(8), 1077–1094 (2009). doi: 10.1177/0278364909341413
  18. 18.
    Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013). doi: 10.1109/TMECH.2012.2204070 CrossRefGoogle Scholar
  19. 19.
    Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robots. In: Proceedings of the National Academy of Sciences, USA, vol. 108, no. 51, pp. 20400–20403 (2011). doi: 10.1073/pnas.1116564108
  20. 20.
    Sitti, M.: Miniature devices: voyage of the microrobots. Nature 458(7242), 1121–1122 (2008). doi: 10.1038/4581121a CrossRefGoogle Scholar
  21. 21.
    Suzuki, Y., Li, H., Furuta, K.: Locomotion generation of friction board with an inclined slider. In: 46th IEEE Conference on Decision and Control, 2007, pp. 1937–1943 (2007). doi: 10.1109/CDC.2007.4434269
  22. 22.
    Tanaka, Y., Ito, K., Nakagaki, T., Kobayashi, R.: Mechanics of peristaltic locomotion and role of anchoring. J. R. Soc. Interface 9(67), 222–233 (2012). doi: 10.1098/rsif.2011.0339 CrossRefGoogle Scholar
  23. 23.
    Wood, R.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008). doi: 10.1109/TRO.2008.916997 CrossRefGoogle Scholar
  24. 24.
    Zimmermann, K., Zeidis, I.: Worm-like locomotion as a problem of nonlinear dynamics. J. Theor. Appl. Mech. 45(1), 179–187 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xuance Zhou
    • 1
  • Carmel Majidi
    • 2
  • Oliver M. O’Reilly
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburgUSA

Personalised recommendations