Nonlinear Dynamics

, Volume 78, Issue 4, pp 2779–2794 | Cite as

Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode

  • Lin Zhao
  • Yingmin Jia
Original Paper


This paper studies the attitude synchronization control problem for a group of spacecraft. Considering inertia uncertainties and external disturbances with unknown bounds, a decentralized adaptive control scheme is developed using nonsingular fast terminal sliding mode (NFTSM). A multispacecraft NFTSM is firstly designed, which contains the advantages of the nonsingular terminal sliding mode and the traditional linear sliding mode together. Then, the continuous decentralized adaptive NFTSM control laws with boundary layer by employing NFTSM associated with novel adaptive architecture are proposed, which can eliminate the chattering, and guarantee the attitude tracking errors converge to the regions containing the origin in finite time. At last, numerical simulations are presented to demonstrate the performance of the proposed control strategy.


Spacecraft formation flying (SFF)  Attitude synchronization Adaptive control Nonsingular fast terminal sliding mode (NFTSM) 



This work was supported by the National Basic Research Program of China (973 Program: 2012CB821200, 2012CB821201) and the NSFC (61134005, 61221061, 61327807).


  1. 1.
    Wang, P., Hadaegh, F., Lau, K.: Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn. 22, 28–35 (1999)CrossRefGoogle Scholar
  2. 2.
    Subbarao, K., Welsh, S.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31, 1284–1294 (2008)CrossRefGoogle Scholar
  3. 3.
    Ren, W., Beard, R.: Formation feedback control for multiple spacecraft via virtual structures. IEE Proc. Control Theory Appl. 151, 357–368 (2004)CrossRefGoogle Scholar
  4. 4.
    Xin, M., Balakrishnan, S., Pernicka, H.: Position and attitude control of deep-space spacecraft formation flying via virtual structure and \(\theta -D\) technique. ASME J. Dyn. Sys. Meas. Control 129, 689–698 (2007)CrossRefGoogle Scholar
  5. 5.
    Van Dyke, M., Hall, C.: Decentralized coordinated attitude control within a formation of spacecraft. J. Guid. Control Dyn. 29, 1101–1109 (2006)CrossRefGoogle Scholar
  6. 6.
    Jin, E., Jiang, X., Sun, Z.: Robust decentralized attitude coordination control of spacecraft formation. Syst. Control Lett. 57, 567–577 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chung, S., Ahsun, U., Slotine, J.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32, 512–526 (2009)CrossRefGoogle Scholar
  8. 8.
    Bai, H., Arcak, M., Wen, J.: Rigid body attitude coordination without inertial frame information. Automatica 44, 3170–3175 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dimarogonasa, D., Tsiotras, P., Kyriakopoulos, K.: Leader–follower cooperative attitude control of multiple rigid bodies. Syst. Control Lett. 58, 429–435 (2009)CrossRefGoogle Scholar
  10. 10.
    Ren, W.: Formation keeping and attitude alignment for multiple spacecraft through local interactions. J. Guid. Control Dyn. 30, 633–638 (2007)CrossRefGoogle Scholar
  11. 11.
    Ren, W.: Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Trans. Control Syst. Technol. 18, 383–292 (2010)CrossRefGoogle Scholar
  12. 12.
    Du, H., Li, S.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50, 646–651 (2014)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ren, W., Beard, R., Atkins, E.: Information consensus in multi-vehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Jia, Y.: An iterative learning approach to formation control of multi-agent systems. Syst. Control Lett. 61, 148–154 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Zou, A., Kumar, K.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283–1296 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Jiang, F., Wang, L.: Finite-time weighted average consensus with respect to a monotonic function and its application. Syst. Control Lett. 60, 718–725 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55, 950–955 (2010)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47, 1706–1712 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Meng, D., Jia, Y.: Iterative learning approaches to design finite-time consensus protocols for multi-agent systems. Syst. Control Lett. 61, 187–194 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14, 219–228 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhao, L., Hua, C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75, 311–318 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Zhang, B., Jia, Y., Du, J., Zhang, J.: Finite-time synchronous control for multiple manipulators with sensor saturations and a constant reference. IEEE Trans. Control Syst. Technol. 22, 1159–1165 (2014)CrossRefGoogle Scholar
  24. 24.
    Du, H., Li, S., Ding, S.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56, 2711–2717 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhou, J., Hu, Q., Friswell, M.: Decentralized finite time attitude synchronization control of satellite formation flying. J. Guid. Control Dyn. 36, 185–195 (2013)CrossRefGoogle Scholar
  26. 26.
    Venkataraman, S., Gulati, S.: Terminal sliding modes: a new approach to nonlinear control systems. In: Fifth International Conference on Advanced Robotics, pp. 443–448 (1991)Google Scholar
  27. 27.
    Man, Z., Paplinski, A., Wu, H.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39, 24642469 (1994)MathSciNetGoogle Scholar
  28. 28.
    Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229–244 (2013)CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust. Nonlinear Control 21, 686–702 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Int. J. Robust. Nonlinear Control (2013, in press). doi: 10.1002/rnc.3071
  31. 31.
    Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591–3599 (2013)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38, 2159–2167 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Yu, X., Man, Z.: Fast terminal sliding mode control design for nonlinear dynamic systems. IEEE Trans. Circuits Syst. I 39, 261–264 (2002)MathSciNetGoogle Scholar
  34. 34.
    Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust. Nonlinear Control 21, 1865–1879 (2011)CrossRefzbMATHGoogle Scholar
  36. 36.
    Liang, H., Sun, Z., Wang, J.: Robust decentralized attitude control of spacecraft formations under time-varying topologies, model uncertainties and disturbances. Acta Astronaut. 81, 445–455 (2012)CrossRefGoogle Scholar
  37. 37.
    Zou, A., Kumar, K.: Distributed attitude coordination control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 48, 1329–1346 (2012)CrossRefGoogle Scholar
  38. 38.
    Wu, B., Wang, D., Poh, E.: Decentralized robust adaptive control for attitude synchronization under directed communication topology. J. Guid. Control Dyn. 34, 1276–1282 (2011)CrossRefGoogle Scholar
  39. 39.
    Wu, B., Wang, D., Poh, E.: Decentralized sliding-mode control for attitude synchronization in spacecraft formation. Int. J. Robust. Nonlinear Control 23, 1183–1197 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Schaub, H., Akella, M.R., Junkins, J.L.: Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J. Guid. Control Dyn. 24, 95–100 (2001)CrossRefGoogle Scholar
  41. 41.
    Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, 1177–1182 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Ren, W.: Distributed attitude alignment in spacecraft formation flying. Int. J. Adapt. Control Signal Process. 21, 95–113 (2007)CrossRefzbMATHGoogle Scholar
  43. 43.
    Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control Dyn. 35, 740–748 (2012) Google Scholar
  44. 44.
    Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  45. 45.
    Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.The Seventh Research Division, Department of Systems and ControlBeihang University (BUAA)BeijingChina

Personalised recommendations