Nonlinear Dynamics

, Volume 78, Issue 3, pp 2113–2127 | Cite as

Parameter identification of bidirectional IPT system using chaotic asexual reproduction optimization

  • Xiaofang Yuan
  • Yongzhong Xiang
  • Yan Wang
  • Xinggang Yan
Original Paper


Bidirectional inductive power transfer (IPT) system facilitates contactless power transfer between two sides and across an air gap, through weak magnetic coupling. Typically, this system constitutes a high-order resonant circuit and, as such, is difficult to design and control. In this study, a novel technique for parameter identification of bidirectional IPT system is presented by using chaotic asexual reproduction optimization (CARO). The asexual reproduction optimization (ARO) is a novel kind of evolutionary-based algorithm that mathematically models the budding mechanism of asexual reproduction. The CARO employs chaotic sequence to enhance ARO’s global searching ability. The parameter identification of a bidirectional IPT system is posed as an optimization process with an objective function minimizing the errors between the estimated and measured value. The implementation of the CARO-based parameter identification technique is analyzed in detail. Simulations are used to test the robustness and generalization ability of the proposed technique.


Parameter identification Asexual reproduction optimization (ARO) Bidirectional inductive power transfer (IPT) Contactless power transfer Chaotic map 



This work was supported in part by the National Natural Science Foundation of China under Grant No. 61104088; and Young Teachers Promotion Program of Hunan University.


  1. 1.
    Wang, C.S., Steilau, O.H., Covic, G.A.: Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 52, 1308–1314 (2005)CrossRefGoogle Scholar
  2. 2.
    Madawala, U.K., Thrimawithana, D.J., Kularatna, N.: An ICPT-supercapacitor based hybrid system for surge free power transfer. IEEE Trans. Ind. Electron. 54, 3287–3297 (2007)CrossRefGoogle Scholar
  3. 3.
    Kim, Y.H., Jin, K.H.: A contactless power transfer system using a series-series-parallel resonant converter. Int. J. Electron. 99, 885–897 (2012)CrossRefGoogle Scholar
  4. 4.
    Madawala, U.K., Thrimawithana, D.J.: A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans. Ind. Electron. 58, 4789–4796 (2011)Google Scholar
  5. 5.
    Swain, A.K., Neath, M.J., Madawala, U.K., Thrimawithana, D.J.: A dynamic multivariable state-space model for bidirectional inductive power transfer systems. IEEE Trans. Power Electron. 27, 4772–4780 (2012)CrossRefGoogle Scholar
  6. 6.
    Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, S232–S237 (2010)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1, 53–66 (1997)CrossRefGoogle Scholar
  8. 8.
    Chandra Mohan, B., Baskaran, R.: A survey: ant colony optimization based recent research and implementation on several engineering domain. Expert Syst. Appl. 39, 4618–4627 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, C., Ouyang, D., Ning, J.: An artificial bee colony approach for clustering. Expert Syst. Appl. 37, 4761–4767 (2010)CrossRefGoogle Scholar
  10. 10.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)CrossRefGoogle Scholar
  11. 11.
    Xu, Z.D., Guo, Y.F., Wang, S.A., Huang, X.H.: Optimization analysis on parameters of multi-dimensional earthquake isolation and mitigation device based on genetic algorithm. Nonlinear Dyn. 72, 757–765 (2013)CrossRefGoogle Scholar
  12. 12.
    Mokeddem, D., Khellaf, A.: Optimal feeding profile for a fuzzy logic controller in a bioreactors using genetic algorithm. Nonlinear Dyn. 67, 2835–2845 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using Firefly Algorithm. Comput. Struct. 89, 2325–2336 (2011)CrossRefGoogle Scholar
  14. 14.
    Yuan, X.F., Dai, X.S., Zhao, J.Y., He, Q.: On a novel multi-swarm fruit fly optimization algorithm and its application. Appl. Math. Comput. 233, 260–271 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Farasat, A., Menhaj, M.B., Mansouri, T., Moghadam, M.R.S.: ARO: a new model-free optimization algorithm inspired from asexual reproduction. Appl. Soft Comput. 10, 1284–1292 (2010)CrossRefGoogle Scholar
  16. 16.
    Mansouri, T., Farasat, A., Menhaj, M.B., Moghadam, M.R.S.: ARO: s new model free optimization algorithm for real time applications inspired by the asexual reproduction. Expert Syst. Appl. 38, 4866–4874 (2011)CrossRefGoogle Scholar
  17. 17.
    Khanteymoori, A.R., Menhaj, M.B., Homayounpour, M.M.: Structure learning in Bayesian networks using asexual reproduction optimization. ETRI J. 33, 39–49 (2011)CrossRefGoogle Scholar
  18. 18.
    Asl, A.N., Menhaj, M.B., Sajedin, A.: Control of leader-follower formation and path planning of mobile robots using Asexual Reproduction Optimization (ARO). Appl. Soft Comput. 14, 563–576 (2014)CrossRefGoogle Scholar
  19. 19.
    Yuan, X.F., Yang, Y.M., Wang, H.: Improved parallel chaos optimization algorithm. Appl. Math. Comput. 219, 3590–3599 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Acharjee, P., Goswami, S.K.: Chaotic particle swarm optimization based robust load flow. Int. J. Electr. Power Energ. Syst. 32, 141–146 (2010)CrossRefGoogle Scholar
  21. 21.
    Gao, Z., Liao, X.Z.: Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn. 67, 1387–1395 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ma, Z.S.: Chaotic populations in genetic algorithms. Appl. Soft Comput. 12, 2409–2424 (2012)CrossRefGoogle Scholar
  23. 23.
    Wei, Z., Ge, F.Z., Lu, Y., Li, L.X., Yang, Y.X.: Chaotic ant swarm for the traveling salesman problem. Nonlinear Dyn. 65, 271–281 (2011) Google Scholar
  24. 24.
    Li, Y., Wen, Q., Zhang, B.: Chaotic ant swarm optimization with passive congregation. Nonlinear Dyn. 68, 129–136 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Chahkandi, V., Yaghoobi, M., Veisi, G.: CABC-CSA: a new chaotic hybrid algorithm for solving optimization problems. Nonlinear Dyn. 73, 475–484 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Alatas, B.: Chaotic harmony search algorithms. Appl. Math. Comput. 216, 2687–2699 (2010)CrossRefMATHGoogle Scholar
  27. 27.
    Baykasoglu, A.: Design optimization with chaos embedded great deluge algorithm. Appl. Soft Comput. 12, 1055–1067 (2012)CrossRefGoogle Scholar
  28. 28.
    Willcox, S., Moltschaniwskyj, N.A., Crawford, C.: Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study. J. Exp. Mar. Biol. Ecol. 353, 107–114 (2007)CrossRefGoogle Scholar
  29. 29.
    Martinez, V.G., Menger, G.J., Zoran, M.J.: Regeneration and asexual reproduction share common molecular changes: upregulation of a neural glycoepitope during morphallaxis in Lumbriculus. Mech. Dev. 122, 721–732 (2005)CrossRefGoogle Scholar
  30. 30.
    Yuan, X.F., Li, S.T., Wang, Y.N., Sun, W., Wu, L.H.: Parameter identification of electronic throttle using a novel hybrid optimization algorithm. Nonlinear Dyn. 63, 549–557 (2011)CrossRefGoogle Scholar
  31. 31.
    Yang, D.X., Liu, Z.J., Zhou, J.L.: Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Comm. Nonlinear Sci. Numer. Simulat. 19, 1229–1246 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xiaofang Yuan
    • 1
  • Yongzhong Xiang
    • 1
  • Yan Wang
    • 1
  • Xinggang Yan
    • 2
  1. 1.College of Electrical and Information EngineeringHunan UniversityChangsha China
  2. 2.School of Engineering and Digital ArtsUniversity of KentKentUK

Personalised recommendations