Advertisement

Nonlinear Dynamics

, Volume 78, Issue 3, pp 2141–2159 | Cite as

Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles

  • Na Wang
  • Huai-Ning Wu
  • Lei Guo
Original Paper

Abstract

This paper investigates the nonlinear control problem for flexible air-breathing hypersonic vehicles (FAHVs). The coupling dynamics between flexible and rigid-body parts of FAHVs may cause degradation of control performance or high-frequency oscillations of control input and flexible state. In this paper, the flexible effects produced by the coupling are modeled as a kind of unknown disturbance and included in the new control-design model, for which a coupling observer is constructed to estimate these effects. Thus, a novel nonlinear composite control strategy, which combines a coupling-observer-based feedforward compensator and a dynamic-inversion-based feedback controller, is proposed to reject the flexible effects on pitch rate and track desired trajectories of velocity and flight-path angle. The stability of composite closed-loop system is analyzed by using the Lyapunov theory. Simulation results on a full nonlinear model of FAHVs demonstrate that the presented controller is more effective by comparison with the previous scheme.

Keywords

Flexible air-breathing hypersonic vehicles Rigid-flexible coupling dynamics Coupling observer Disturbance observer-based control Composite hierarchical anti-disturbance control 

Notes

Acknowledgments

This work is supported by National 973 program: 2012CB720003; National Science Foundation of China grants: 61127007, 60925012 and 91016004.

References

  1. 1.
    Curran, E.: Scramjet engines: the first forty years. J. Propul. Power 17(6), 1138–1148 (2001)CrossRefGoogle Scholar
  2. 2.
    Engelund, W.: Hyper-X aerodynamics: the X-43A airframe-integrated scramjet propulsion flight-test experiments. J. Spacecr. Rockets 38(6), 801–802 (2001)CrossRefGoogle Scholar
  3. 3.
    Fidan, B., Mirnirani, M., Ioannou, P.: Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. In: AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia, AIAA Paper 2003-7081 (2003)Google Scholar
  4. 4.
    Bolender, M., Oppenheimer, M., Doman, D.: Effects of unsteady and viscous aerodynamics on the dynamics of a flexible air-breathing hypersonic vehicle. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, South Carolina, AIAA Paper 2007-6397 (2007)Google Scholar
  5. 5.
    Shaughnessy, J., Pinckney, S., McMinn, J., Cruz, C., Kelley, M.: Hypersonic vehicle simulation model: winged-cone configuration. NASA TM-102610 (1990)Google Scholar
  6. 6.
    Bolender, M., Doman, D.: Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecr. Rockets 44(2), 374–387 (2007)CrossRefGoogle Scholar
  7. 7.
    Schmidt, D.: Dynamics and control of hypersonic aeropropulsive/aeroelastic vehicles. AIAA 92-4326-CP (1992)Google Scholar
  8. 8.
    Chavez, F., Schmidt, D.: Analytical aeropropulsive/aeroelastic hypersonic-vehicle model with dynamic analysis. J. Guid. Control Dyn. 17(6), 1308–1319 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chavez, F., Schmidt, D.: Uncertainty modeling for multivariable-control robustness analysis of elastic high-speed vehicles. J. Guid. Control Dyn. 22(1), 87–95 (1999)CrossRefGoogle Scholar
  10. 10.
    Williams, T., Bolender, M., Doman, D.: An aerothermal flexible mode analysis of a hypersonic vehicle. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, AIAA Paper 2006-6647 (2006)Google Scholar
  11. 11.
    Gregory, I., Chowdhry, R., McMinn, J., Shaughnessy, J.: Hypersonic vehicle model and control law development using \(H_{\infty }\) and \(\mu \) synthesis. NASA TM-4562 (1994)Google Scholar
  12. 12.
    Chen, M., Jiang, C., Wu, Q.: Disturbance-observer-based robust flight control for hypersonic vehicles using neural networks. Adv. Sci. Lett. 4(5), 1771–1775 (2011)CrossRefGoogle Scholar
  13. 13.
    Groves, K., Sigthorsson, D., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, AIAA Paper 2005-6144 (2005)Google Scholar
  14. 14.
    Groves, K., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Anti-windup control for an air-breathing hypersonic vehicle model. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, AIAA Paper 2006-6557 (2006)Google Scholar
  15. 15.
    Sigthorsson, D., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Tracking control for an overactuated hypersonic air-breathing vehicle with steady state constraints. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, AIAA Paper 2006-6558 (2006)Google Scholar
  16. 16.
    Sigthorsson, D., Jankovsky, P., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Robust linear output feedback control of an airbreathing hypersonic vehicle. J. Guid. Control Dyn. 31(4), 1052–1066 (2008)CrossRefGoogle Scholar
  17. 17.
    Hu, X., Wu, L., Hu, C., Gao, H.: Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle. J. Franklin I. 349(2), 559–577 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marrison, C., Stengel, R.: Design of robust control systems for a hypersonic aircraft. J. Guid. Control Dyn. 21(1), 58–63 (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, Q., Stengel, R.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control Dyn. 23(4), 577–585 (2000)Google Scholar
  20. 20.
    Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004)CrossRefGoogle Scholar
  21. 21.
    Butt W., Yan L., Kendrick A.: Robust adaptive dynamic surface control of a hypersonic flight vehicle. In: 49th IEEE Conference on Decision and Control, pp. 3632–3637, Atlanta, Georgia, USA (2010)Google Scholar
  22. 22.
    Li, S., Sun, H., Sun, C.: Composite controller design for an air-breathing hypersonic vehicle. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 69(5), 595–611 (2010)Google Scholar
  23. 23.
    Xu, B., Sun, F., Yang, C., Gao, D.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, B., Sun, F., Liu, H., Ren, J.: Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory Appl. 6(4), 487–497 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xu, B., Shi, Z., Yang, C., Wang, S.: Neural hypersonic flight control via time-scale decomposition with throttle setting constraint. Nonlinear Dyn. 73(3), 1849–1861 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1—-2), 229–244 (2013). doi: 10.1007/s11071-013-0780-4 CrossRefzbMATHGoogle Scholar
  28. 28.
    Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control 16(1), 162–174 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Parker, J., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Control Dyn. 30(3), 856–869 (2007)CrossRefGoogle Scholar
  30. 30.
    Fiorentini, L., Serrani, A.: Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica 48(7), 1248–126 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Fiorentini, L., Serrani, A., Bolender, M., Doman, D.: Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Control Dyn. 32(2), 401–416 (2009)CrossRefGoogle Scholar
  32. 32.
    Driels, M.: Linear Control Systems Engineering. McGraw-Hill, New York (1996)Google Scholar
  33. 33.
    Radke, A., Gao, Z.: A survey of state and disturbance observer for practitioners. In: Proceedings of the 2006 American Control Conference, pp. 5183–5188, Minneapolis, Minnesota, USA (2010)Google Scholar
  34. 34.
    Guo, L., Cao, S.: Anti-disturbance control for systems with multiple disturbances. CRC Press, Boca Raton (2013)Google Scholar
  35. 35.
    Chen, W.H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003)CrossRefGoogle Scholar
  36. 36.
    Liu, H., Guo, L., Zhang, Y.: An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn. 67(3), 2081–2088 (2012) Google Scholar
  37. 37.
    Guo, L., Chen, W.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005)CrossRefzbMATHGoogle Scholar
  38. 38.
    Guo, L., Wen, X.: Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems. Trans. Inst. Meas. Control 33(8), 942–956 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Instrumentation Science and Opto-Electronics EngineeringBeihang UniversityBeijingPeople’s Republic of China
  2. 2.National Key Laboratory of Aerospace Intelligent Control TechnologyBeijing Aerospace Automatic Control InstituteBeijingPeople’s Republic of China
  3. 3.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingPeople’s Republic of China
  4. 4.National Key Laboratory on Aircraft Control TechnologyBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations