Advertisement

Nonlinear Dynamics

, Volume 80, Issue 4, pp 1861–1867 | Cite as

Nonlinear normal and anomalous response of non-interacting electric and magnetic dipoles subjected to strong AC and DC bias fields

  • W. T. Coffey
  • Y. P. Kalmykov
  • N. Wei
Original Paper

Abstract

The perturbation theory approach via the Smoluchowski equation to the nonlinear dielectric relaxation of noninteracting permanent electric dipoles (Coffey and Paranjape, Proc R Ir Acad A 78:17, 1978) and the analogous Brownian magnetic relaxation of ferrofluids where Néel relaxation is ignored is revisited for the particular case of a strong dc bias field superimposed on a strong ac field. Unlike weak ac and strong bias dc fields, a frequency-dependent dc term now appears in the response as well as additional nonlinear terms at the fundamental and second harmonic frequencies. These may be experimentally observable particularly in the ferrofluid application. The corresponding results for the dc term for anomalous relaxation based on the fractional Smoluchowski equation are also given.

Keywords

Nonlinear relaxation Debye theory Ferrofluids Brownian motion Anomalous relaxation 

Notes

Acknowledgments

W. T. Coffey thanks Ambassade de France en Irlande for a research visit to Perpignan. N. Wei acknowledges the Government of Ireland Scholarship Award. We thank Dr. S. V. Titov for helpful conversations.

References

  1. 1.
    Debye, P.: Polar Molecules. Chemical Catalog Co., New York (1929). Reprinted Dover, New York (1954)zbMATHGoogle Scholar
  2. 2.
    Coffey, W.T., Paranjape, B.V.: Dielectric and Kerr effect relaxation in alternating electric fields. Proc. R. Ir. Acad. Sect. A 78, 17 (1978)MathSciNetGoogle Scholar
  3. 3.
    Déjardin, J.L., Kalmykov, Y.P.: Nonlinear dielectric relaxation of polar molecules in a strong ac electric field: steady state response. Phys. Rev. E 61, 1211 (2000)CrossRefGoogle Scholar
  4. 4.
    Déjardin, J.L., Kalmykov, Y.P.: Steady state response of the nonlinear dielectric relaxation and birefringence in strong superimposed ac and dc bias electric fields: polar and polarizable molecules. J. Chem. Phys. 112, 2916 (2000)CrossRefGoogle Scholar
  5. 5.
    Coffey, W.T., Kalmykov, Y.P.: The Langevin Equation, 3rd edn. World Scientific, Singapore (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Déjardin, J.L., Kalmykov, Y.P., Déjardin, P.M.: Birefringence and dielectric relaxation in strong electric fields. Adv. Chem. Phys. 117, 271 (2001)Google Scholar
  7. 7.
    Déjardin, J.L., Debiais, G., Ouadiou, A.: On the nonlinear behavior of dielectric relaxation in alternating fields. II. Analytic expressions of the nonlinear susceptibilities. J. Chem. Phys. 98, 8149 (1993)CrossRefGoogle Scholar
  8. 8.
    De Smet, K., Hellemans, L., Rouleau, J.F., et al.: Rotational relaxation of rigid dipolar molecules in nonlinear dielectric spectra. Phys. Rev. E 57, 1384 (1998)CrossRefGoogle Scholar
  9. 9.
    Jadżyn, J., Kędziora, P., Hellemans, L.: Frequency dependence of the nonlinear dielectric effect in diluted dipolar solutions. Phys. Lett. A 251, 49 (1999)CrossRefGoogle Scholar
  10. 10.
    Jadżyn, J., Kędziora, P., Hellemans, L., et al.: Nonlinear dielectric relaxation in non-interacting dipolar systems. Chem. Phys. Lett. 289, 541 (1999)Google Scholar
  11. 11.
    Fannin, P.C., Scaife, B.K.P., Charles, S.W.: A study of the complex ac susceptibility of magnetic fluids subjected to a constant polarizing magnetic field. J. Magn. Magn. Mater. 85, 54 (1990)CrossRefGoogle Scholar
  12. 12.
    Fannin, P.C., Giannitsis, A.T.: Investigation of the field dependence of magnetic fluids exhibiting aggregation. J. Mol. Liq. 114, 89 (2004)CrossRefGoogle Scholar
  13. 13.
    Coffey, W.T., Kalmykov, Y.P.: Thermal fluctuations of magnetic nanoparticles: fifty years after brown. J. Appl. Phys. 112, 121301 (2012)CrossRefGoogle Scholar
  14. 14.
    Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677 (1963)Google Scholar
  16. 16.
    Fannin, P.C., Charles, S.W., Mac Oireachtaigh, C., et al.: Investigation of possible hysteresis effects arising from frequency- and field-dependent complex susceptibility measurements of magnetic fluids. J. Magn. Magn. Mater. 302, 1 (2006)CrossRefGoogle Scholar
  17. 17.
    Coffey, W.T., Crothers, D.S.F., Kalmykov, Y.P., Déjardin, P.M.: Nonlinear response of permanent dipoles in a uniaxial potential to alternating fields. Phys. Rev. E 71, 062102 (2005)CrossRefGoogle Scholar
  18. 18.
    Coffey, W.T., Crothers, D.S.F., Kalmykov, Y.P.: Nonlinear response of permanent dipoles in a mean-field potential to alternating fields. J. Non-Cryst. Solids 352, 4710 (2006)CrossRefGoogle Scholar
  19. 19.
    Titov, S.V., El Mrabti, H., Déjardin, P.M., Kalmykov, YuP: Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields. Phys. Rev. B 82, 100413 (2010)CrossRefGoogle Scholar
  20. 20.
    Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941) Google Scholar
  21. 21.
    Davidson, D.W., Cole, R.H.: Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484 (1951)CrossRefGoogle Scholar
  22. 22.
    Havriliak, S., Negami, S.: A complex plane representation of dielectric and mechanical relaxation processes in some polymers. J. Polym. Sci. Part A-1 14, 99 (1966); Polymer 8, 161 (1967).Google Scholar
  23. 23.
    Nigmatullin, R.R., Ryabov, Ya. A.: Cole-Davidson dielectric relaxation as a self-similar relaxation process. Fiz. Tverd. Tela (St. Petersburg) 39, 101 (1997). [Phys. Solid State 39, 87 (1997)].Google Scholar
  24. 24.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Novikov, V.V., Privalko, V.P.: Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media with chaotic structure. Phys. Rev. E 64, 031504 (2001)CrossRefGoogle Scholar
  26. 26.
    Hilfer, R.: H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys. Rev. E 65, 061510 (2002)CrossRefGoogle Scholar
  27. 27.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V.: Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion. J. Chem. Phys. 116, 6422 (2002)CrossRefGoogle Scholar
  28. 28.
    Gudowska-Nowak, E., Bochenek, K., Jurlewicz, A., Weron, K.: Hopping models of charge transfer in a complex environment: coupled memory continuous-time random walk approach. Phys. Rev. E 72, 061101 (2005)CrossRefGoogle Scholar
  29. 29.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V.: Fractional rotational Brownian motion and anomalous dielectric relaxation in dipole systems. Adv. Chem. Phys. 133B, 285 (2006)Google Scholar
  30. 30.
    Goychuk, I.: Anomalous relaxation and dielectric response. Phys. Rev. E 76, 040102 (2007)CrossRefGoogle Scholar
  31. 31.
    Coffey, W.T., Kalmykov, Y.P., Titov, S.V.: Anomalous nonlinear dielectric and Kerr effect relaxation steady state responses in superimposed ac and dc electric fields. J. Chem. Phys. 126, 084502 (2007)CrossRefGoogle Scholar
  32. 32.
    Uchaikin, V.V., Sibatov, R.T.: Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems. World Scientific Publishing Company, Singapore (2012)Google Scholar
  33. 33.
    Khamzin, A.A., Nigmatullin, R.R., Popov, I.I.: Log-periodic corrections to the Cole-Cole expression in dielectric relaxation. Theor. Math. Phys. 173, 1604 (2012); Physica A, 392, 136 (2013).Google Scholar
  34. 34.
    Fröhlich, H.: Theory of Dielectrics, 2nd edn. Oxford University Press, Oxford (1958)zbMATHGoogle Scholar
  35. 35.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  36. 36.
    West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)CrossRefGoogle Scholar
  37. 37.
    Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers, Vol. 1, Background and Theory, Vol. 2, Application. Springer, Berlin (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  2. 2.Laboratoire de Mathématiques et de Physique (EA 4217)Université de Perpignan Via DomitiaPerpignanFrance

Personalised recommendations