Nonlinear Dynamics

, Volume 78, Issue 1, pp 629–648

A general class of predation models with multiplicative Allee effect

Original Paper

Abstract

A class of models of predator–prey interaction with Allee effect on the prey population is presented. Both the Allee effect and the functional response are modelled in the most simple way by means of general terms whose conveniently chosen mathematical properties agree with, and generalise, a number of concrete Leslie–Gower-type models. We show that this class of models is well posed in the sense that any realistic solution is bounded and remains non-negative. By means of topological equivalences and desingularization techniques, we find specific conditions such that there may be extinction of both species. In particular, the local basin boundaries of the origin are found explicitly, which enables one to determine the extinction or survival of species for any given initial condition near this equilibrium point. Furthermore, we give conditions such that an equilibrium point corresponding to a positive steady state may undergo saddle-node, Hopf and Bogdanov–Takens bifurcations. As a consequence, we are able to describe the dynamics governed by the bifurcated limit cycles and homoclinic orbits by means of carefully sketched bifurcation diagrams and suitable illustrations of the relevant invariant manifolds involved in the overall organisation of the phase plane. Finally, these findings are applied to concrete model vector fields; in each case, the particular relevant functions that define the conditions for the associated bifurcations are calculated explicitly.

Keywords

Predator–prey model Allee effect Bifurcation analysis 

References

  1. 1.
    Aguirre, P., Doedel, E., Krauskopf, B., Osinga, H.M.: Investigating the consequences of global bifurcations for two-dimensional manifolds of vector fields. Discret. Contin. Dyn. Syst. A 29(4), 1309–1344 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aguirre, P., Flores, J.D., González-Olivares, E.: Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response. Nonlinear Anal. Real World Appl. 16, 235–249 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aguirre, P., González-Olivares, E., Sáez, E.: Two limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. Nonlinear Anal. Real World Appl. 10(3), 1401–1416 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aguirre, P., González-Olivares, E., Sáez, E.: Three limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. SIAM J. Appl. Math. 69(5), 1244–1262 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aguirre, P., González-Olivares, E., Torres, S.: Stochastic predator–prey model with Allee effect. Nonlinear Anal. Real World Appl. 14(1), 768–779 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Allee, W.C.: Animal Aggregations, A Study in General Sociology. University of Chicago Press, Chicago (1931)CrossRefGoogle Scholar
  7. 7.
    Arrowsmith, D.K., Place, C.M.: Dynamical systems. Differential Equations, Maps and Chaotic Behaviour. Chapman & Hall, London (1992)Google Scholar
  8. 8.
    Bascompte, J.: Extinction thresholds: insights from simple models. Ann. Zool. Fennici 40, 99–114 (2003)Google Scholar
  9. 9.
    Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191 (2007)CrossRefGoogle Scholar
  10. 10.
    Bogdanov, R.I.: Versal deformations of a singular point on the plane in the case of zero eigenvalues. Funct. Anal. Appl. 9, 144–145 (1975)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Boukal, D.S., Berec, L.: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218, 375–394 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brassil, C.E.: Mean time to extinction of a metapopulation with an Allee effect. Ecol. Model. 143, 9–13 (2001)CrossRefGoogle Scholar
  13. 13.
    Chow, S.-N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Clark, C.W.: Mathematical Bioeconomic: The Optimal Management of Renewable Resources. Wiley, New York (1990)MATHGoogle Scholar
  15. 15.
    Clark, C.W.: The Worldwide Crisis in Fisheries: Economic Models and Human Behavior. Cambridge University Press, Cambridge (2006)Google Scholar
  16. 16.
    Conway, E.D., Smoller, J.A.: Global analysis of a system of predator–prey equations. SIAM J. Appl. Math. 46, 630–642 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Courchamp, F., Clutton-Brock, T.H.: Population dynamics of obligate cooperators. Proc. R. Soc. Lond. B 206, 557–563 (1999)CrossRefGoogle Scholar
  18. 18.
    Courchamp, F., Grenfell, B.T., Clutton-Brock, T.H.: Impact of natural enemies on obligately cooperative breeders. Oikos 91, 311–322 (2000)CrossRefGoogle Scholar
  19. 19.
    De Roos, A.M., Persson, L.: Size-dependent life-history traits promote catastrophic collapses of top predators. PNAS 20, 12907–12912 (2002)CrossRefGoogle Scholar
  20. 20.
    Dennis, B.: Allee effects in stochastic populations. Oikos 96, 389–401 (2002)CrossRefGoogle Scholar
  21. 21.
    Dumortier, F., Llibre, J., Artès, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)MATHGoogle Scholar
  22. 22.
    Freedman, H.I., Wolkowicz, G.S.K.: Predator–prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 8, 493–508 (1986)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gascoigne, J., Lipcius, R.N.: Allee effects driven by predation. J. Appl. Ecol. 41, 801–810 (2004)CrossRefGoogle Scholar
  24. 24.
    González-Olivares, E., González-Yáñez, B., Mena-Lorca, J., Flores, J.D.: Uniqueness of limit cycles and multiple attractors in a Gause-type predator–prey model with nonmonotonic functional response and Allee effect on prey. Math. Biosci. Eng. 10, 345–367 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    González-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., Flores, J.D.: Dynamical complexities in the Leslie–Gower predator–prey model as consequences of the Allee effect on prey. Appl. Math. Model. 35, 366–381 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    González-Olivares, E., Rojas-Palma, A.: Limit cycles in a Gause-type predator–prey model with sigmoid functional response and weak Allee effect on prey. Math. Methods Appl. Sci. 35, 963–975 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Gregory, S., Courchamp, F.: Safety in numbers: extinction arising from predator-driven Allee effects. J. Anim. Ecol. 79, 511–514 (2010)CrossRefGoogle Scholar
  28. 28.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefMATHGoogle Scholar
  29. 29.
    Hasík, K.: On a predator–prey system of Gause type. J. Math. Biol. 60, 59–74 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Korobeinikov, A.: A Lyapunov function for Leslie–Gower predator–prey models. Appl. Math. Lett. 14, 697–699 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kramer, A.M., Dennis, B., Liebhold, A.M., Drake, J.M.: The evidence for Allee effects. Popul. Ecol. 51, 341–354 (2009)CrossRefGoogle Scholar
  32. 32.
    Kramer, A.M., Drake, J.M.: Experimental demonstration of population extinction due to a predator-driven Allee effect. J. Anim. Ecol. 79, 633–639 (2010)CrossRefGoogle Scholar
  33. 33.
    Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)Google Scholar
  34. 34.
    Li, Y., Gao, H.: Existence, uniqueness and global asymptotic stability of positive solutions of a predator–prey system with Holling II functional response with random perturbation. Nonlinear Anal. 68, 1694–1705 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Li, Y., Xiao, D.: Bifurcations of a predator–prey system of Holling and Leslie types. Chaos Solitons Fractals 34, 606–620 (2007)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Lidicker Jr, W.Z.: The Allee effect: its history and future importance. Open Ecol. J. 3, 71–82 (2010)CrossRefGoogle Scholar
  37. 37.
    May, R.M.: Stability and Complexity in Model Ecosystems, 2nd edn. Princeton University Press, Princeton, NJ (2001)MATHGoogle Scholar
  38. 38.
    Pal, P.J., Mandal, P.K., Lahiri, K.K.: A delayed ratio-dependent predator–prey model of interacting populations with Holling type III functional response. Nonlinear Dyn. 76, 201–220 (2014)Google Scholar
  39. 39.
    Ruan, S., Tang, Y., Zhang, W.: Computing the heteroclinic bifurcation curves in predator–prey systems with ratio-dependent functional response. J. Math. Biol. 57, 223–241 (2008)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Stephens, P.A., Sutherland, W.J.: Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. 14, 401–405 (1999)CrossRefGoogle Scholar
  42. 42.
    Takens, F.: Singularities of vector fields. Inst. Hautes Études Sci. Publ. Math. 43, 47–100 (1974) Google Scholar
  43. 43.
    Tang, G., Tang, S., Cheke, R.A.: Global analysis of a Holling type II predator–prey model with a constant prey refuge. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-1157-4
  44. 44.
    Taylor, R.J.: Predation. Chapman and Hall, London (1984)CrossRefGoogle Scholar
  45. 45.
    Turchin, P.: Complex population dynamics. A Theoretical/empirical Synthesis. Monographs in Population Biology, vol. 35. Princeton University Press, Princeton (2003)Google Scholar
  46. 46.
    Wang, J., Shi, J., Wei, J.: Predator–prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Wang, Y., Wang, J.: Influence of prey refuge on predator–prey dynamics. Nonlinear Dyn. 67, 191–201 (2012)CrossRefGoogle Scholar
  48. 48.
    Wolkowicz, G.S.W.: Bifurcation analysis of a predator–prey system involving group defense. SIAM J. Appl. Math. 48, 592–606 (1988)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Xiao, D., Ruan, S.: Bifurcations in a predator–prey system with group defense. Int. J. Bifur. Chaos 11, 2123–2131 (2001)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Xiao, D., Zhang, F.K.: Multiple bifurcations of a predator–prey system. Discret. Contin. Dyn. Syst. Ser. B 8, 417–433 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Group of Analysis and Mathematical Modeling Valparaíso AM2V, Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations