Advertisement

Nonlinear Dynamics

, Volume 78, Issue 1, pp 279–288 | Cite as

Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system

  • Xiang Li
  • Ranchao Wu
Original Paper

Abstract

In this paper, a new fractional-order hyperchaotic system based on the Lorenz system is presented. The chaotic behaviors are validated by the positive Lyapunov exponents. Furthermore, the fractional Hopf bifurcation is investigated. It is found that the system admits Hopf bifurcations with varying fractional order and parameters, respectively. Under different bifurcation parameters, some conditions ensuring the Hopf bifurcations are proposed. Numerical simulations are given to illustrate and verify the results.

Keywords

Lorenz system Chaos Fractional-order system Hopf bifurcation Stability 

Notes

Acknowledgments

The authors would like to thank the reviewers and the editor for their valuable comments and suggestions. This work is supported by the Program of National Natural Science Foundation of China (No. 51275229), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20093401120001).

References

  1. 1.
    Lorenz, E.N.: Deterministic non-periodic flows. J. Atoms. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  2. 2.
    Rössler, O.E.: Continuous chaos; four prototype equations. Ann. N. Y. Acad. Sci. 316, 376–392 (1979)CrossRefGoogle Scholar
  3. 3.
    Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lü, J., Chen, G.: Dynamical analysis of a new chaotic attractor. Int. J. Bifurc. Chaos 12, 1001–1015 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17(4), 1079–1107 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: 2005 International Conference on Physics and Control, PhysCon 2005. Proceedings vol. 2005, pp. 596–599. (2005). doi: 10.1109/PHYCON.2005.1514053
  9. 9.
    Sun, H.H., Abdelwahab, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)CrossRefGoogle Scholar
  11. 11.
    Kusnezov, O.: Electromagnetic Theory. Chelsea, New York (1971)Google Scholar
  12. 12.
    Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)CrossRefGoogle Scholar
  13. 13.
    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I 42, 485–490 (1995)CrossRefGoogle Scholar
  14. 14.
    Mohammad, S.T., Mohammad, H.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102–113 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Varsha, D.G., Sachin, B.: Chaos in fractional ordered Liu system. J. Comput. Appl. Math. 59, 1117–1127 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1982)Google Scholar
  17. 17.
    Abdelouahab, M.S., Hamri, N.E., Wang, J.: Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn. 69, 275–284 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, X., Wu, R.C.: Dynamics of a new hyperchaotic system with only one equilibrium point. J. Math. 2013, 935384 (2013)CrossRefGoogle Scholar
  19. 19.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967) Google Scholar
  20. 20.
    Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of the International IMACS IEEE-SMC Multiconference on Computational Engineering in Systems Applications, vol. 2. Lille, France (1996)Google Scholar
  21. 21.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 13, 3–22 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358, 1–4 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localiza- tion of generalized Chua’s system. In: IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 4(1). (2010). doi: 10.3182/20100826-3-TR-4016.00009
  24. 24.
    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(1), 1–69 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kuznetsov, N., Kuznetsov, O., Leonov, G., Vagaitsev, V.: Analytical numerical localization of hidden attractor in electrical Chua’s circuit, Lecture Notes in Electrical Engineering LNEE, vol. 174, pp. 149–158. Springer, Berlin (2013)Google Scholar
  26. 26.
    Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth Chua systems. Phys. D 241(18), 1482–1486 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time sereis. Phys. D 16(3), 285–317 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mishina, A.P., Proskuryakov, I.V.: Higher Algebra. Nauka, Moscow (1965)zbMATHGoogle Scholar
  29. 29.
    Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order Van der Pol oscillator. J. Vib. Control 15(6), 803–819 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tavazoei, M.S., Haeri, M., Attari, M.: A proof for nonexistence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945–948 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing China
  2. 2.School of MathematicsAnhui UniversityHefei China

Personalised recommendations