Nonlinear Dynamics

, Volume 77, Issue 3, pp 967–981 | Cite as

Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations

Original Paper

Abstract

We investigate the potential of using a piezoelectric energy harvester to concurrently harness energy from base excitations and vortex-induced vibrations. The harvester consists of a multilayered piezoelectric cantilever beam with a circular cylinder tip mass attached to its free end which is placed in a uniform air flow and subjected to direct harmonic excitations. We model the fluctuating lift coefficient by a van der Pol wake oscillator. The Euler–Lagrange principle and the Galerkin procedure are used to derive a nonlinear distributed-parameter model for a harvester under a combination of vibratory base excitations and vortex-induced vibrations. Linear and nonlinear analyses are performed to investigate the effects of the electrical load resistance, wind speed, and base acceleration on the coupled frequency, electromechanical damping, and performance of the harvester. It is demonstrated that, when the wind speed is in the pre- or post-synchronization regions, its associated electromechanical damping is increased and hence a reduction in the harvested power is obtained. When the wind speed is in the lock-in or synchronization region, the results show that there is a significant improvement in the level of the harvested power which can attain 150 % compared to using two separate harvesters. The results also show that an increase of the base acceleration results in a reduction in the vortex-induced vibrations effects, an increase of the difference between the resonant excitation frequency and the pull-out frequency, and a significant effects associated with the quenching phenomenon.

Keywords

Energy harvesting Piezoelectric material Vortex-induced vibrations Combined loadings Nonlinear analysis Quenching phenomenon 

References

  1. 1.
    Sodano, H., Park, G., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Digest 36, 197–205 (2004)CrossRefGoogle Scholar
  2. 2.
    Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for micro-systems applications. Meas. Sci. Technol. 17, 175–195 (2006)CrossRefGoogle Scholar
  3. 3.
    Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)CrossRefGoogle Scholar
  4. 4.
    Tang, L., Padoussis, M.P., Jiang, J.: Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter mill. J. Sound Vib. 326, 263–276 (2009)CrossRefGoogle Scholar
  5. 5.
    Abdelkefi, A.: Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. PhD Dissertation, Virginia Tech (2012)Google Scholar
  6. 6.
    Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2005)CrossRefGoogle Scholar
  7. 7.
    Inman, D., Grisso, B.: Towards autonomous sensing. Proceedings of Smart Structures and Materials Conference, SPIE, p. 61740T (2006)Google Scholar
  8. 8.
    Karami, A., Inman, D.J.: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)CrossRefGoogle Scholar
  9. 9.
    Abdelkefi, A., Ghommem, M.: Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor. Appl. Mech. Lett. 3, 052001 (2013)CrossRefGoogle Scholar
  10. 10.
    Goldschmidtboeing, F., Woias, P.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18, 104013 (2008)CrossRefGoogle Scholar
  11. 11.
    Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. (2013). doi:10.1177/1045389X13489365
  12. 12.
    Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations. Smart Mater. Struct. 20, 115007 (2011)CrossRefGoogle Scholar
  13. 13.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R., Najar, F.: Energy harvesting from a multifrequency response of a tuned bending–torsion system. Smart Mater. Struct. 21, 075029 (2012)CrossRefGoogle Scholar
  14. 14.
    Karami, A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2011)CrossRefGoogle Scholar
  15. 15.
    Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Apl. Phy. Let. 101, 094102 (2013)CrossRefGoogle Scholar
  16. 16.
    Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)CrossRefGoogle Scholar
  17. 17.
    Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)CrossRefGoogle Scholar
  18. 18.
    Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)CrossRefGoogle Scholar
  19. 19.
    Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)CrossRefGoogle Scholar
  20. 20.
    Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493, 74931W (2009)CrossRefGoogle Scholar
  21. 21.
    Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)CrossRefGoogle Scholar
  22. 22.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvester. Nonlinear Dyn. 67, 925–939 (2012)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)CrossRefGoogle Scholar
  24. 24.
    Abdelkefi, A., Nuhait, A.O.: Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters. Smart Mater. Struct. 22, 095029 (2013)CrossRefGoogle Scholar
  25. 25.
    Akaydin, H.D., Elvin, N., Andreopoulos, Y.: Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp. Fluids. 49, 291–304 (2010)CrossRefGoogle Scholar
  26. 26.
    Akaydin, H.D., Elvin, N., Andreopoulos, Y.: The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 21, 025007 (2012)CrossRefGoogle Scholar
  27. 27.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 70, 1377–1388 (2012)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., Nuhait, A.O.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656–4667 (2013)CrossRefGoogle Scholar
  29. 29.
    Sirohi, J., Mahadik, M.: Piezoelectric wind energy harvester for low-power sensors. J. Intell. Mater. Syst. Struct. 22, 2215–2228 (2011)CrossRefGoogle Scholar
  30. 30.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22, 015014 (2013)CrossRefGoogle Scholar
  32. 32.
    Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. (2013). doi:10.1177/1045389X13491019
  33. 33.
    Yang, Y.W., Zhao, L.Y., Tang, L.H.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 064105 (2013)CrossRefGoogle Scholar
  34. 34.
    Jung, H.J., Lee, S.W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 055022 (2011) Google Scholar
  35. 35.
    Abdelkefi, A., Scanlon, J.M., McDowell, E., Hajj, M.R.: Performance enhancement of piezoelectric energy harvesters from wake galloping. Appl. Phys. Lett. 103, 033903 (2013)Google Scholar
  36. 36.
    Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. (2013). doi:10.1016/j.jsv.2013.04.009i
  37. 37.
    Bibo, A., Daqaq, M.F.: Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Appl. Phys. Lett. 102, 243904 (2013)CrossRefGoogle Scholar
  38. 38.
    Yan, Z., Abdelkefi, A., Hajj, M.R.: Nonlinear analysis of piezoelectric energy harvesters from ambient and galloping vibrations. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, 8–11 April 2013.Google Scholar
  39. 39.
    Erturk, A., Inman, D.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009–025026 (2009)CrossRefGoogle Scholar
  40. 40.
    Benaroya, H., Gabbai, R.D.: Modelling vortex-induced fluid–structure interaction. Phil. Trans. R. Soc. A. 366, 1231–1274 (2008)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Birkhoff, G., Zarantanello, E.H.: Jets Wakes and Cavities. Academic Press, NewYork (1957)MATHGoogle Scholar
  42. 42.
    Bishop, R.E.D., Hassan, Y.: The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. Lond. 277, 51–74 (1964)CrossRefGoogle Scholar
  43. 43.
    Hartlen, R.T., Currie, I.G.: A lift-oscillator model for vortex-induced vibrations. J. Eng. Mech. 69, 577–591 (1970)Google Scholar
  44. 44.
    Skop, R.A., Griffin, O.M.: A model for the vortex-excited resonant response of bluff cylinders. J. Sound Vib. 27, 225–233 (1973)Google Scholar
  45. 45.
    Skop, R.A., Griffin, O.M.: On a theory for the vortex-excited oscillations of flexible cylindrical structures. J. Sound Vib. 41, 263–274 (1975)CrossRefMATHGoogle Scholar
  46. 46.
    Skop, R.A., Balasubramanian, S.: A new twist on an old model for vortex-excited vibrations. J. Fluids Struct. 11, 395–412 (1997)CrossRefGoogle Scholar
  47. 47.
    Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004)CrossRefGoogle Scholar
  48. 48.
    Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85, 1134–1141 (2007)CrossRefGoogle Scholar
  49. 49.
    Chen, S.S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publishing Corporation, Washington, DC (1987)Google Scholar
  50. 50.
    Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J. Vib. Acoust. 126, 332–342 (2004)CrossRefGoogle Scholar
  51. 51.
    Nayfeh, A.H., Mook, D.M.: Nonlinear Oscillations. Wiley, New York (1995). Wiley Classic Library EditionCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of MechanicsHuazhong University of Science and TechnologyWuhan China
  2. 2.Hubei Key Laboratory for Engineering Structural Analysis and Safety AssessmentWuhan China
  3. 3.Department of Engineering Science and Mechanics, MC 0219Virginia TechBlacksburgUSA

Personalised recommendations