Advertisement

Nonlinear Dynamics

, Volume 80, Issue 4, pp 1839–1852 | Cite as

A fractional perspective to the bond graph modelling of world economies

  • J. A. Tenreiro MachadoEmail author
  • Maria Eugénia Mata
Original Paper

Abstract

Inspired in dynamic systems theory and Brewer’s contributions to apply it to economics, this paper establishes a bond graph model. Two main variables, a set of inter-connectivities based on nodes and links (bonds) and a fractional order dynamical perspective, prove to be a good macro-economic representation of countries’ potential performance in nowadays globalization. The estimations based on time series for 50 countries throughout the last 50 decades confirm the accuracy of the model and the importance of scale for economic performance.

Keywords

Fractional calculus Bond graphs Economy Modelling Dynamics 

References

  1. 1.
    Acemoglu, D., Johnson, S., Robinson, J.A.: The colonial origins of comparative development: an empirical investigation. Am. Econ. Rev. 91(5), 1369–1401 (2001)CrossRefGoogle Scholar
  2. 2.
    Acemoglu, D., Robinson, J.: Why Nations Fail: The Origins of Power, Prosperity, and Poverty. Profile Books, New York (2012)Google Scholar
  3. 3.
    Allen, R.C.: International competition in iron and steel, 1850–1913. J. Econ. Hist. 39(4), 911–937 (1979)CrossRefGoogle Scholar
  4. 4.
    Allen, R.C.: American exceptionalism as a problem in global history. Oxford Discussion Paper Series, Number 689. University of Oxford, Department of Economics (2013). http://www.economics.ox.ac.uk/materials/papers/13161/paper689.pdf
  5. 5.
    Bacharach, M., Dempster, A., Enos, J. (eds.): Mathematical Models in Economics. Oxford University Press, Oxford (1994)Google Scholar
  6. 6.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing Company, Singapore (2012)Google Scholar
  7. 7.
    Borutzky, W.: Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models. Springer, London (2010)CrossRefGoogle Scholar
  8. 8.
    Breedveld, P.C.: Thermodynamic bond graphs and the problem of thermal lnertance. J. Frankl. Inst. 314(1), 15–40 (1982)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Brewer, J.W.: Bond graphs of microeconomic systems. In: 75-WA/Aut-8. American Society of Mechanical Engineering, Houston (1975)Google Scholar
  10. 10.
    Brewer, J.W.: Structure and cause and effect relations in social systems simulations. IEEE Trans. Syst. Man Cybern. 7(6), 468–474 (1977)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Brewer, J.W.: Progress in the bond graph representations of economics and population dynamics. J. Frankl. Inst. 328(5/6), 675–696 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Brewer, J.W., Craig, P.P.: Bilinear, dynamic single-ports and bond graphs of economic systems. J. Frankl. Inst. 313(4), 185–196 (1982)CrossRefzbMATHGoogle Scholar
  13. 13.
    Broadberry, S.: The Productivity Race: British Manufacturing in International Perspective. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  14. 14.
    Bruton, L.T.: Network transfer functions using the concept of frequency dependent negative resistance. IEEE Trans. Circuit Theory 16, 406–408 (1969)CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Moore, K.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 363–367 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(2), 507–519 (1971)CrossRefGoogle Scholar
  17. 17.
    Chua, L.O.: Nonlinear circuit foundations for nanodevices, Part I: the four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)Google Scholar
  18. 18.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Connolly, T.J., Contréras, J.A.: Bond graph primitives for modeling systems with fractional differential equations. Fract. Calc. Appl. Anal. 12(4), 391–408 (2009)zbMATHGoogle Scholar
  20. 20.
    Crafts, N.: Steam as a general purpose technology: a growth accounting perspective. Econ. J. 114(495), 338–351 (2004)Google Scholar
  21. 21.
    Deskur, J.: Models of magnetic circuits and their equivalent electrical diagrams. Int. J. Comput. Math. Electr. Electron. Eng. 18(4), 600–610 (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    Fogel, R.W.: Capitalism and democracy in 2040—forecasts and speculations. NBER Working Paper Series. The National Bureau of Economic Research, Cambridge (2007). http://www.nber.org/papers/w13184
  23. 23.
    Gawthrop, P.J., Bevan, G.P.: Bond-graph modeling: a tutorial introduction for control engineers. IEEE Control Syst. Mag. 27(2), 24–45 (2007)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Gawthrop, P.J., Smith, L.S.: Metamodelling: Bond Graphs and Dynamic Systems. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  25. 25.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  26. 26.
    Guijarro, N., Dauphin-Tanguy, G.: Approximation methods to embed the non-integer order models in bond graphs. Sig. Process. 83(11), 2335–2344 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Hayek, F.: The use of knowledge in society. Am. Econ. Rev. 35(4), 519–530 (1945)Google Scholar
  28. 28.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  29. 29.
    Ionescu, C.: The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics. Series in BioEngineerin. Springer, London (2013)CrossRefGoogle Scholar
  30. 30.
    Jeltsema, D., Dòria-Cerezo, A.: Memristive port-Hamiltonian systems. Math. Comput. Model. Dyn. Syst. 16(2), 75–93 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Jeltsema, D., Dòria-Cerezo, A.: Port-Hamiltonian formulation of systems with memory. Proc. IEEE 100(6), 1928–1937 (2012)Google Scholar
  32. 32.
    Jesus, I.S., Machado, J.A.T.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1–2), 45–55 (2009)CrossRefzbMATHGoogle Scholar
  33. 33.
    Karnopp, D., Rosenberg, R.C.: System Dynamics: A Unified Approach. Wiley, New York (1975)Google Scholar
  34. 34.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies, Elsevier (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Long, J., Ferrie, J.: Intergenerational occupational mobility in Britain and the United States since 1850. Am. Econ. Rev. 103(4), 1109–1137 (2013)CrossRefGoogle Scholar
  36. 36.
    Ma, C., Hori, Y.: Application of bond graph models to the representation of buildings and their use. In: Proceedings of American Control Conference, Boston, pp. 2901–2906 (2004)Google Scholar
  37. 37.
    Machado, J.A.T.: Calculation of fractional derivatives of noisy data with genetic algorithms. Nonlinear Dyn. 57(1–2), 253–260 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Machado, J.A.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3492–3497 (2009)CrossRefGoogle Scholar
  39. 39.
    Machado, J.A.T.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18(12), 264–275 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Machado, J.A.T., Galhano, A.M.: Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 68(1–2), 107–115 (2012)CrossRefGoogle Scholar
  41. 41.
    Machado, J.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)Google Scholar
  42. 42.
    Machado, J.T., Galhano, A.M., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98, 577–582 (2013)CrossRefGoogle Scholar
  43. 43.
    Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)CrossRefGoogle Scholar
  45. 45.
    Méhauté, A.L., Nigmatullin, R.R., Nivanen, L.: Flèches du temps et géométrie fractale. Hermès, Paris (1998)zbMATHGoogle Scholar
  46. 46.
    Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  47. 47.
    Moreau, X., Khemane, F., Malti, R., Serrier, P.: Approximation of a fractance by a network of four identical RC cells arranged in gamma and a purely capacitive cell. In: Baleanu, D., Machado, J.A.T., Güvenç, Z.B. (eds.) New Trends in Nanotechnology and Fractional Calculus Applications, pp. 107–120. Springer, Dordrecht (2001)Google Scholar
  48. 48.
    Mukherjee, A., Karmakar, R., Samantaray, A.K.: Bond Graph in Modeling, Simulation and Fault Identification. CRC Press, New Delhi (2006)Google Scholar
  49. 49.
    Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)Google Scholar
  50. 50.
    O’Rourke, K.: Tariffs and growth in the late 19th century. Econ. J. 110(463), 456–483 (2000)CrossRefGoogle Scholar
  51. 51.
    O’Rourke, K., Williamson, J.G.: Globalization and History: The Evolution of a Nineteenth-Century Atlantic Economy. MIT Press, Cambridge (2001)Google Scholar
  52. 52.
    Oustaloup, A.: Systèmes asservis linéaires d’ordre fractionnaire: théorie et pratique. Masson, Paris (1983)Google Scholar
  53. 53.
    Paynter, H.: An Epistemic Prehistory of Bond Graphs. North-Holland, Amsterdam (1992)Google Scholar
  54. 54.
    Pease, D.E.: The New American Exceptionalism. Critical American Studies. University of Minnesota Press, Minneapolis (2009)Google Scholar
  55. 55.
    Podlubny, I.: Fractional differential equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1998)Google Scholar
  56. 56.
    Podlubny, I.: Fractional-order systems and PI\(^{\lambda }\)D\(^{\mu }\)-controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)zbMATHGoogle Scholar
  58. 58.
    Say, J.B.: Traité dÉconomie Politique (translated as A Treatise on Political Economy). Batoche Books, Kither, Paris (1803, 17, 19, 26, 41 (2001)) Google Scholar
  59. 59.
    Senani, R.: On the realization of floating active elements. IEEE Trans. Circuits Syst. 33(3), 323–324 (1986)CrossRefGoogle Scholar
  60. 60.
    Seymour, M. (ed.): Dynamic Factors in Industrial Productivity. Basil Blackwell, Oxford (1956)Google Scholar
  61. 61.
    Shakespeare, W.: As You Like It (Act 2, Scene 7). Cambridge University Press, New York ([1599] 2000)Google Scholar
  62. 62.
    Soliman, A.M., Saad, R.A.: Two new families of floating fdnr circuits. J. Electr. Comput. Eng. 2010(Article ID 563761), 7 p (2010)Google Scholar
  63. 63.
    Stiglitz, J.E.: Information and the change in the paradigm in economics. Am. Econ. Rev. 92(3), 460–501 (2002)CrossRefGoogle Scholar
  64. 64.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 97, 80–83 (2008)CrossRefGoogle Scholar
  65. 65.
    Tarasov, V.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2010)CrossRefGoogle Scholar
  66. 66.
    Temin, P.: General equilibrium models in economic history. J. Econ. Hist. 31(1), 58–75 (1971)CrossRefGoogle Scholar
  67. 67.
    Thoma, J., Bouamama, B.O.: Modelling and Simulation in Thermal and Chemical Engineering: A Bond Graph Approach. Springer, Berlin (2010)Google Scholar
  68. 68.
    Thoma, J.U.: Introduction to Bond Graphs and Their Applications. Pergamon Press, Oxford (1975)Google Scholar
  69. 69.
    Tsai, J.J.H., Gero, J.S.: Unified Energy-Based Qualitative Representation for Building Analysis. VDM Verlag, Saarbrucken (2009)Google Scholar
  70. 70.
    Tsai, J.J.H., Gero, J.S.: A qualitative energy-based unified representation for buildings. Autom. Constr. 19(1), 20–42 (2010)CrossRefGoogle Scholar
  71. 71.
    Valério, D., da Costa, J.S.: An Introduction to Fractional Control. IET, Stevenage (2012)CrossRefGoogle Scholar
  72. 72.
    Ventra, M.D., Pershin, Y.V., Chua, L.O.: Circuits elements with memory: memristors, memcapacitors and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRefGoogle Scholar
  73. 73.
    Walras, L.: Elements dÉconomie Politique Pure (translated to Elements of Pure Economics). Homewwod, Irwin (1874, 1877 (1954))Google Scholar
  74. 74.
    Wellstead, P.E.: Introduction to Physical System Modelling. Academic Press, London (1979)Google Scholar
  75. 75.
    Williams, R.S.: How we found the missing memristor. IEEE Spectr. 45(12), 28–35 (2008)CrossRefGoogle Scholar
  76. 76.
    Wong, Y.K.: Application of bond graph models to economics. Int. J. Model. Simul. 21(3), 181–190 (2001)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. A. Tenreiro Machado
    • 1
    Email author
  • Maria Eugénia Mata
    • 2
  1. 1.Dept. Electrical Engineering, Institute of EngineeringPolytechnic of PortoPortoPortugal
  2. 2.Faculdade de Economia, Nova SBEUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations