Skip to main content
Log in

Partially saturated nonlinear control for gantry cranes with hardware experiments

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Gantry cranes are typically underactuated nonlinear dynamic systems with highly coupled system states. We propose in this paper a partially saturated nonlinear controller for gantry crane systems by converting the crane model into an objective (i.e., desired closed-loop) system. The presented scheme guarantees “soft” cart start by introducing a smooth saturated function into the controller. In particular, we first establish an objective system with desired signal convergence and stability performance. Then, on the basis of the objective dynamics’ structure, we derive a partially saturated control law straightforwardly by solving one partial differential equation, without necessity of performing partial feedback linearization operations to the original crane model. The convergence and stability performance of the objective system is assured with Lyapunov-based methods. In order to verify the practical control performance of the proposed method, we implement both numerical simulation and hardware experiments to illustrate that the new method achieves increased performance with respect to existing methods, with lessened control efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We focus our controller development on the resultant force \(F(t)\) since, in this work, the model (4) will be utilized for feedforward friction force compensation, as will be shown in the experiments in Sect. 5.

  2. Owing to the smooth property, the hyperbolic tangent function \(\tanh (\cdot )\) in the controller (32) does not affect the uniqueness and existence of the solutions of the closed-loop (objective) system.

  3. It is worthwhile to point out that it is generally assumed that \(-\pi /2 < \theta (t) < \pi /2\) [1619, 22, 28, 29], which means that the load will not go above the cart in practice. Hence in this sense, we have relaxed this assumption from a mathematical viewpoint, and an almost global asymptotic control result is obtained.

References

  1. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003)

    Article  MATH  Google Scholar 

  2. Li, Y., Liu, Y.: Real-time tip-over prevention and path following control for redundant nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches. ASME J. Dyn. Syst. Meas. Control 128(4), 753–764 (2006)

    Article  Google Scholar 

  3. Liu, Y., Li, Y.: Dynamic modeling and adaptive neural-fuzzy control for nonholonomic mobile manipulators moving on a slope. Int. J. Control Autom. Syst. 4(2), 197–203 (2006)

    Google Scholar 

  4. Ouyang, H., Uchiyama, N., Sano, S.: Anti-sway control of rotary crane only by horizontal boom motion. In: Proceedings of the 2010 IEEE International Conference on Control Applications, Yokohama, Japan, pp. 591–595 (2010)

  5. Xin, X., She, J., Liu, Y.: A unified solution to swing-up control for n-link planar robot with single passive joint based on virtual composite links and passivity. Nonlinear Dyn. 67(2), 909–923 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kuchler, S., Mahl, T., Neupert, J., Schneider, K., Sawodny, O.: Active control for an offshore crane using prediction of the vessel’s motion. IEEE/ASME Trans. Mechatron. 16(2), 297–309 (2011)

    Article  Google Scholar 

  7. She, J.H., Zhang, A., Lai, X., Wu, M.: Global stabilization of 2-DOF underactuated mechanical systems: an equivalent-input-disturbance approach. Nonlinear Dyn. 69(1–2), 495–509 (2012)

    Article  MathSciNet  Google Scholar 

  8. Li, E., Liang, Z.Z., Hou, Z.G., Tan, M.: Energy-based balance control approach to the ball and beam system. Int. J. Control 82(6), 981–992 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ibañez, C. A., García, J. C. M., López, A. S.: Bounded control based on saturation functions of nonlinear under-actuated mechanical systems: the cart-pendulum system case. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, USA, pp. 1759–1764 (2011)

  10. Gao, B.T., Xu, J., Zhao, J.G., Huang, X.L.: Stabilizing control of an underactuated 2-dimensional TORA with only rotor angle measurement. Asian J. Control 15(3), 1–12 (2013)

    MathSciNet  Google Scholar 

  11. Xin, X., She, J.H., Yamasaki, T., Liu, Y.: Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint. Automatica 45(9), 1986–1994 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Piazzi, A., Visioli, A.: Optimal dynamic-inversion-based control of an overhead crane. IEE Proc. Control Theory Appl. Part D 149(5), 405–411 (2002)

    Article  Google Scholar 

  13. Van den Broeck, L., Diehl, M., Swevers, J.: A model predictive control approach for time optimal point-to-point motion control. Mechatronics 21(7), 1203–1212 (2011)

    Article  Google Scholar 

  14. Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Phase plane analysis based motion planning for underactuated overhead cranes. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3483–3488 (2011)

  15. Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl. 6(10), 1410–1423 (2012)

    Article  MathSciNet  Google Scholar 

  16. Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D.: Human operator performance testing using an input-shaped bridge crane. ASME J. Dyn. Syst. Meas. Control 128(4), 835–841 (2006)

    Article  Google Scholar 

  17. Garrido, S., Abderrahim, M., Giménez, A., Diez, R., Balaguer, C.: Anti-swinging input shaping control of an automatic construction crane. IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2008)

    Article  Google Scholar 

  18. Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003)

    Article  MATH  Google Scholar 

  19. Solihin, M.I., Wahyudi, Legowo, A.: Fuzzy-tuned PID anti-swing control of automatic gantry crane. J. Vib. Control 16(1), 127–145 (2010)

    Article  MATH  Google Scholar 

  20. Fang, Y., Zergeroglu, E., Dawson, D.M., Dixon, W.E.: Nonlinear coupling control laws for an overhead crane system. In: Proceedings of the IEEE Conference on Control Applications, Mexico City, Mexico, pp. 639–644 (2001)

  21. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatron. 8(3), 418–423 (2003)

    Article  Google Scholar 

  22. Sun, N., Fang, Y., Zhang, Y., Ma, B.: A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2012)

    Article  Google Scholar 

  23. Sun, N., Fang, Y.: An efficient online trajectory generating method for underactuated crane systems. Int. J. Robust Nonlinear Control. doi: 10.1002/rnc.2953 (in press)

  24. Liu, R., Li, S., Ding, S.: Nested saturation control for overhead crane systems. Trans. Inst. Meas. Control 34(7), 862–875 (2012)

    Article  Google Scholar 

  25. Burg, T., Dawson, D., Rahn, C., Rhodes, W.: Nonlinear control of an overhead crane via the saturating control approach of Teel. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, USA, pp. 3155–3160 (1996)

  26. Wang, W., Yi, J., Zhao, D., Liu, D.: Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc. Control Theory Appl. Part D 151(6), 683–690 (2004)

    Google Scholar 

  27. Bartolini, G., Pisano, A., Usai, E.: Second-order sliding-mode control of container cranes. Automatica 38(10), 1783–1790 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ngo, Q.H., Hong, K.-S.: Adaptive sliding mode control of container cranes. IET Control Theory Appl. 6(5), 662–668 (2012)

    Article  MathSciNet  Google Scholar 

  29. Lee, H., Liang, Y., Segura, D.: A sliding-mode antiswing trajectorycontrol for overhead cranes with high-speed load hoisting. ASME J. Dyn. Syst. Meas. Control 128(4), 842–845 (2006)

    Article  Google Scholar 

  30. Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans. Ind. Electron. 55(11), 3972–3984 (2008)

    Article  Google Scholar 

  31. Le, T.A., Kim, G.-H., Kim, K.Y., Lee, S.-G.: Partial feedback linearization control of overhead cranes with varying cable lengths. Int. J. Precis. Eng. Manuf. 13(4), 501–507 (2012)

    Article  Google Scholar 

  32. Liu, D., Guo, W., Yi, J.: Dynamics and GA-based stable control for a class of underactuated mechanical systems. Int. J. Control Autom. Syst. 6(1), 35–43 (2008)

    Google Scholar 

  33. Toxqui, R., Yu, W., Li, X.: Anti-swing control for overhead cranes with neural compensation. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, pp. 9447–9453 (2006)

  34. Chang, C.: Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans. Ind. Inf. 3(2), 164–172 (2007)

    Article  Google Scholar 

  35. Ma, B., Fang, Y., Zhang, Y.: Switching-based emergency braking control for an overhead crane system. IET Control Theory Appl. 4(9), 1739–1747 (2010)

    Article  Google Scholar 

  36. Hu, G., Makkar, C., Dixon, W.E.: Energy-based nonlinear control of underactuated Euler–Lagrange systems subject to impacts. IEEE Trans. Autom. Control 52(9), 1742–1748 (2007)

    Article  MathSciNet  Google Scholar 

  37. Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  Google Scholar 

  38. Makkar, C., Hu, G., Sawyer, W.G., Dixon, W.E.: Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction. IEEE Trans. Autom. Control 52(10), 1988–1994 (2007)

    Article  MathSciNet  Google Scholar 

  39. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the reviewers and the editor for the valuable suggestions that have greatly improved the quality of the paper. They also greatly acknowledge the financial supports from the National Science and Technology Pillar Program of China (Grant No. 2013BAF07B03), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61325017), the National Natural Science Foundation of China (Grant No. 11372144), and the Academic Award for Doctoral Students from the Ministry of Education of China (Grant No. (190)H0511009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, N., Fang, Y. Partially saturated nonlinear control for gantry cranes with hardware experiments. Nonlinear Dyn 77, 655–666 (2014). https://doi.org/10.1007/s11071-014-1328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1328-y

Keywords

Navigation