Advertisement

Nonlinear Dynamics

, Volume 77, Issue 1–2, pp 231–241 | Cite as

Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial

  • Lin TengEmail author
  • Herbert H. C. Iu
  • Xingyuan WangEmail author
  • Xiukun Wang
Original Paper

Abstract

In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters.

Keywords

Chaos Fractional-order system Memristor Simplest chaotic circuit 

Notes

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Nos: 61370145, 61173183, and 60973152), the Doctoral Program Foundation of Institution of Higher Education of China (No: 20070141014), Program for Liaoning Excellent Talents in University (No: LR2012003), the National Natural Science Foundation of Liaoning province (No: 20082165), and the Fundamental Research Funds for the Central Universities (No: DUT12JB06). The authors gratefully acknowledge the China Scholarship Council for providing L. Teng a postgraduate scholarship.

References

  1. 1.
    Chua, L.O.: Memristor–the missing circuit element. IEEE Trans. Circuits Syst. 18(5), 507–519 (1971)Google Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, G.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I 58(6), 1323–1336 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Merrikh-Bayat, F., Shouraki, S.B., Rohani, A.: Memristor crossbar-based hardware implementation of the IDS method. IEEE Trans. Fuzzy Syst. 19(6), 1083–1096 (2011)CrossRefGoogle Scholar
  6. 6.
    Vourkas, I., Sirakoulis, G.C.: A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)Google Scholar
  7. 7.
    Pershin, Y.V., Fontaine, S.L., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 82, 021926 (2009) Google Scholar
  8. 8.
    Iu, H.H.C., Yu, D.S., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a Twin-T notch filter. IEEE Trans. Circuits Syst. I 58(6), 1337–1344 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(5), 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22(2), 023136 (2012)CrossRefGoogle Scholar
  11. 11.
    Fitch, A.L., Yu, D., Iu, H.H.C., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22(6), 1250133 (Jun. 2012)Google Scholar
  12. 12.
    Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Theoretical developments and applications in physics and engineering. Advances in fractional calculus. Springer, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Hilfer, R.: Applications of fractional calculus in physics. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rico-Ramireza, V., Martinez-Lizardoa, J., Iglesias-Silvaa, G.A., Hernandez-Castrob, S., Diwekarc, U.M.: A fractional calculus application to biological reactive systems. Comput. Aided Chem. Eng. 30, 1302–1306 (2012)CrossRefGoogle Scholar
  15. 15.
    Petráš, I.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II 57(12), 975–979 (2010)CrossRefGoogle Scholar
  16. 16.
    Petráš, I.: Chaos in fractional-order population model. Int. J. Bifurc. Chaos 22(4), 1250072 (2012)CrossRefGoogle Scholar
  17. 17.
    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I 42(8), 485–490 (1995)CrossRefGoogle Scholar
  18. 18.
    Cafagna, D., Grassi, G.: An effective method for detecting chaos in fractional-order systems. Int. J. Bifurc. Chaos 20(3), 669–678 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)CrossRefGoogle Scholar
  20. 20.
    Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185(1), 77–87 (1994)CrossRefGoogle Scholar
  22. 22.
    Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I 59(10), 2422–2431 (2012)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Fitch, A.L., Iu, H.H.C.: Hardware memristor emulators. In: Adamatzky, A., Chen, G. (eds.) Chaos, CNN, memristors and beyond, pp. 540–547. World Scientific, Singapore (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Electrical, Electronic and Computer EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations