Advertisement

Nonlinear Dynamics

, Volume 76, Issue 4, pp 1951–1962 | Cite as

Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice

  • Jun MaEmail author
  • Xinyi Wu
  • Runtong Chu
  • Liping Zhang
Original Paper

Abstract

In this paper, a feasible feedback scheme is used to stabilize the multi-scroll attractors in the Jerk circuit, and the controller is realized using mixed Heaviside function. It is found that arbitrary number (\(n=2, 3, 4, 5,{\ldots }\)) of multi-scroll attractors can be selected from a controlled Jerk circuit, and these multi-scroll attractors can be reproduced using Pspice. The implementation of circuit and controller using Pspice is also presented. The potential mechanism could be that an external forcing in the Sine type is practical to generate a group of equilibrium points, and a linear controller composed of Heaviside function is effective to stabilize the \(n\)-scroll attractors in the chaotic systems.

Keywords

Jerk circuit Multi-scroll attractor Heaviside function Pspice 

Notes

Acknowledgments

This work is supported by the National Nature Science Foundation of China under Grant Nos. 11265008 and 11372122.

References

  1. 1.
    Boccaletti, S., Grebogi, C., Lai, Y.C., et al.: The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Puebla, H., Alvarez-Ramirez, J.: More secure communication using chained chaotic oscillators. Phys. Lett. A 283, 96–108 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Li, C.D., Liao, X.F., Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194, 187–202 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bowong, S., Kakmeni, M.F.M., Siewe, M.S.: Secure communication via parameter modulation in a class of chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 12, 397–410 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Moskalenko, O.I., Koronovskii, A.A., Hramov, A.E.: Generalized synchronization of chaos for secure communication: remarkable stability to noise. Phys. Lett. A 374, 2925–2931 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Zaher, A.A., Abu-Rezq, A.: On the design of chaos-based secure communication systems. Commun. Nonlinear Sci. Numer. Simul. 16, 3721–3737 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Nana, B., Woafo, P.: Synchronized states in a ring of four mutually coupled oscillators and experimental application to secure communications. Commun. Nonlinear Sci. Numer. Simul. 16, 1725–1733 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Mata-Machuca, J.L., Martínez-Guerra, R., Aguilar-López, R., et al.: A chaotic system in synchronization and secure communications. Commun. Nonlinear Sci. Numer. Simul. 17, 1706–1713 (2012)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hou, Y.Y., Chen, H.C., Chang, J.F., et al.: Design and implementation of the Sprott chaotic secure digital communication systems. Appl. Math. Comput. 218, 11799–11805 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sahri, M.N.B., Yoshimori, S.: Secure communication application of Josephson Tetrode in THz region. Phys. Procedia 36, 435–440 (2012)CrossRefGoogle Scholar
  11. 11.
    Gámez-Guzmán, L., Cruz-Hernández, C., López-Gutiérrez, R.M., et al.: Synchronization of Chua’s circuits with multi-scroll attractors: application to communication. Commun. Nonlinear Sci. Numer. Simul. 14, 2765–2775 (2009)CrossRefGoogle Scholar
  12. 12.
    Han, F.L., Hu, J.K., Yu, X.H., et al.: Fingerprint images encryption via multi-scroll chaotic attractors. Appl. Math. Comput. 185, 931–939 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Orue, A.B., Alvarez, G., Pastor, G., et al.: A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. Commun. Nonlinear Sci. Numer. Simul. 15, 3471–3483 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lü, J.H., Han, F.L., Yu, X.H., et al.: Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method. Autom. Control 40, 1677–1687 (2004)zbMATHGoogle Scholar
  15. 15.
    Ahmad, W.M.: A simple multi-scroll hyperchaotic system. Chaos, Solitons Fractals 27, 1213–1219 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, F.Q., Liu, C.X.: A new multi-scroll chaotic system. Chin. Phys. 15, 2878–2882 (2006)CrossRefGoogle Scholar
  17. 17.
    Wang, F.Q., Liu, C.X.: Generation of multi-scroll chaotic attractors via the saw-tooth function. Int. J. Mod. Phys. B 22(15), 2399–2405 (2008)CrossRefGoogle Scholar
  18. 18.
    Wang, F.Q., Liu, C.X.: A new multi-scroll chaotic generator. Chin. Phys. 16, 0942–0945 (2007)CrossRefGoogle Scholar
  19. 19.
    Luo, X.H., Li, H.Q., Dai, X.G.: A family of multi-scroll chaotic attractors and its circuit design. Acta Phys. Sin. 57, 7511–7516 (2008)zbMATHGoogle Scholar
  20. 20.
    Chen, L., Peng, H.J., Wang, D.S.: Studies on the construction method of a family of multi-scroll chaotic systems. Acta Phys. Sin. 57, 3337–3341 (2008)zbMATHGoogle Scholar
  21. 21.
    Dadras, S., Momeni, H.R.: A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors. Phys. Lett. A 373, 3637–3642 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Zhang, C.X., Yu, S.M.: Generation of grid multi-scroll chaotic attractors via switching piecewise linear controller. Phys. Lett. A 374, 3029–3037 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Gandhi, G.: An improved Chua’s circuit and its use in hyperchaotic circuit. Analog Integr. Circ. Sig. 46(2), 173–178 (2006)CrossRefGoogle Scholar
  24. 24.
    Dadras, S., Momeni, H.R.: Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system. Phys. Lett. A 374, 1368–1373 (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56(4), 453–462 (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    Luo, X.H., Tu, Z.T., Liu, X.R., et al.: Implementation of a novel two-attractor grid multi-scroll chaotic system. Chin. Phys. B 19, 070510 (2010)CrossRefGoogle Scholar
  27. 27.
    Bao, B.C., Xu, Q., Xu, J.P.: Multi-scroll hyperchaotic system based on colpitts model and its circuit implementation. J. Electron. (China) 27, 538–543 (2010)CrossRefGoogle Scholar
  28. 28.
    Türk, M., Gülten, A.: Modelling and simulation of the multi-scroll chaotic attractors using bond graph technique. Simul. Mod. Pract. Theor. 19, 899–910 (2011)CrossRefGoogle Scholar
  29. 29.
    Sánchez-López, C.: Automatic synthesis of chaotic attractors. Appl. Math. Comput. 217, 4350–4358 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Sun, G.H., Wang, M., Huang, L.L., Shen, L.Q.: Generating multi-scroll chaotic attractors via switched fractional systems. Circ. Syst. Sig. Proc. 30(6), 1183–1195 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Chen, S.B., Zeng, Y.C., Xu, M.L., et al.: Construction of grid multi-scroll chaotic attractors and its circuit implementation with plynomial and step function. Acta Phys. Sin. 60, 020507 (2011)Google Scholar
  32. 32.
    Liu, C.X., Yi, J., Xi, X.C., et al.: Research on the multi-scroll chaos generation based on Jerk Mode. Procedia Eng. 29, 957–961 (2012)CrossRefGoogle Scholar
  33. 33.
    Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, J.M., et al.: Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 17, 4328–4335 (2012)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ahmad, W.M.: Generation and control of multi-scroll chaotic attractors in fractional order systems. Chaos, Solitons Fractals 25, 727–735 (2005)CrossRefzbMATHGoogle Scholar
  35. 35.
    Deng, W.H., Lü, J.H.: Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system. Phys. Lett. A 369, 438–443 (2007)CrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang, C.X., Yu, S.M.: Generation of multi-wing chaotic attractor in fractional order system. Chaos, Solitons Fractals 44, 845–850 (2011)CrossRefGoogle Scholar
  37. 37.
    Yu, S.M., Lü, J.H., Leun, H., Chen, G.R.: Design and implementation of \(n\)-scroll chaotic attractors from a general Jerk circuit. IEEE Trans. Circ. Syst. I 52(7), 1459–1476 (2005)CrossRefGoogle Scholar
  38. 38.
    Lü, J.H., Chen, G.R.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurcat. Chaos 16, 775–858 (2006)CrossRefzbMATHGoogle Scholar
  39. 39.
    Lü, J.H., Yu, S.M., Leung, H., et al.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circ. Syst. I(53), 149–165 (2006)Google Scholar
  40. 40.
    Yu, S.M., Lü, J.H., Chen, G.R.: Theoretical Design and Circuit Implementation of Multi-Directional Multi-Torus Chaotic Attractors. IEEE Trans. Circ. Syst. I(54), 2087–2098 (2007)CrossRefGoogle Scholar
  41. 41.
    Yu, S.M., Lü, J.H., Chen, G.R.: A family of \(n\)-scroll hyperchaotic attractors and their realization. Phys. Lett. A 364, 244–251 (2007)CrossRefGoogle Scholar
  42. 42.
    Lü, J.H., Murali, K., Sinha, S., et al.: Generating multi-scroll chaotic attractors by thresholding. Phys. Lett. A 372, 3234–3239 (2008)CrossRefzbMATHGoogle Scholar
  43. 43.
    Yu, S.M., Tang, W.K.S.: Generation of n\(\times \)m-scroll attractors in a two-port RCL network with hysteresis circuits. Chaos, Solitons Fractals 39, 821–830 (2009)CrossRefzbMATHGoogle Scholar
  44. 44.
    Yu, S.M., Lü, J.H., Chen, G.R., et al.: Generating grid multi-wing chaotic attractors by constructing heteroclinic loops into switching systems. IEEE Trans. Circ. Syst. II(58), 314–318 (2011)CrossRefGoogle Scholar
  45. 45.
    Yu, S.M., Lü, J.H., Chen, G.R., et al.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circ. Syst. I(59), 1015–1028 (2012)CrossRefGoogle Scholar
  46. 46.
    Xu, F., Yu, P.: Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions. J. Math. Anal. Appl. 362, 252–274 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Muñoz-Pacheco, J.M., Zambrano-Serrano, E., Félix-Beltrán, O., et al.: Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems. Nonlinear Dyn. 70(2), 1633–1643 (2012)CrossRefGoogle Scholar
  48. 48.
    Tang, K.S., Zhong, G.Q., Chen, G.R., Man, K.F.: Generation of \(n\)-scroll attractors via sine function. IEEE Trans. Circ. Syst. I(48), 1369–1372 (2001)CrossRefGoogle Scholar
  49. 49.
    Randwan, A.G., Soliman, A.M., Elwakil, A.S.: 1-D digitally-controlled multi-scroll chaos generator. Int. J. Bifurcat. Chaos 17(1), 227–242 (2007)CrossRefGoogle Scholar
  50. 50.
    Bao, B.C., Zhou, G.H., Xu, Z.: Multiscroll chaotic attractors from a modified colpitts oscillator model. Int. J. Bifurcat. Chaos 20(7), 2203 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Zidan, M.F., Randwan, A.G., Salama, K.N.: Controllable V-shape multiscroll butterfly attractor: system and circuit implementation. Int. J. Bifurcat. Chaos 22(6), 1250143 (2012)CrossRefGoogle Scholar
  52. 52.
    Sánchez-López, C., Trejo-Guerra, R., Muñoz-Pacheco, J.M.: N-scroll chaotic attractors from saturated function series employing CCII+s. Nonlinear Dyn. 61, 331–341 (2010)CrossRefzbMATHGoogle Scholar
  53. 53.
    Sánchez-López, C.: A 1.7 MHz Chua’s circuit using VMs and CF+s. Revista Mexicana de Física 58, 86–93 (2012)Google Scholar
  54. 54.
    Trejo-Guerra, R., Tlelo-Cuautle, E., Sánchez-López, C., Muñoz-Pacheco, J.M.: Realization of multiscroll chaotic attractors by using current-feedback operational amplifiers. Revista Mexicana de Física 56, 268–274 (2010)Google Scholar
  55. 55.
    Ortega-Torres, E., Sánchez-López, C.: Frequency behavior of saturated nonlinear function series based on opamps. Revista Mexicana de Física 59, 504–510 (2013)Google Scholar
  56. 56.
    Trejo-Guerra, R., Tlelo-Cuautle, E., Carbajal-Gómez, V.H., Rodriguez-Gómez, G.: A survey on the integrated design of chaotic oscillators. Appl. Math. Comput. 219, 5113–5122 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Ma, J., Wu, X.Y., Qin, H.X.: Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Phys. Sin. 62(17), 170502 (2013)Google Scholar
  58. 58.
    Li, F., Jin, W.Y., Ma, J.: Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Phys. Sin. 61(24), 240501 (2012)zbMATHGoogle Scholar
  59. 59.
    Gui, Z.F., Wu, X.F., Chen, Y.: Global synchronization of multi-scroll saturated chaotic systems via single-state linear feedback control. Int. J. Mod. Phys. B 27(5), 1350007 (2013)CrossRefMathSciNetGoogle Scholar
  60. 60.
    Sprott, J.C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758 (2000)CrossRefGoogle Scholar
  61. 61.
    Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266, 19 (2000)CrossRefGoogle Scholar
  62. 62.
    Cafagna, D., Grassi, G.: Generation of chaotic beats in a modified Chua’s circuits part I: dyanmic behaviour. Nonlinear Dyn. 44(1–4), 91–99 (2006) Google Scholar
  63. 63.
    Yalçin, M.E.: Multi-scroll and hypercube attractors from a general Jerk circuit using Josephson junctions. Chaos, Solitons Fractals 34, 1659–1666 (2007)CrossRefGoogle Scholar
  64. 64.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)Google Scholar
  65. 65.
    Trejo-Guerra, R., Tlelo-Cuautle, E., Cruz-Hernandez, C., et al.: Chaotic communication system using Chua’s oscillators realized with CCII+s. Int. J. Bifurcat. Chaos 19, 4217 (2009)CrossRefGoogle Scholar
  66. 66.
    Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Fernandez, F.V.: Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm. Appl. Math. Comput. 219(15), 8163–8168 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhysicsLanzhou University of TechnologyLanzhou China

Personalised recommendations