Nonlinear Dynamics

, Volume 76, Issue 2, pp 1395–1410 | Cite as

Non-Filippov dynamics arising from the smoothing of nonsmooth systems, and its robustness to noise

  • M. R. Jeffrey
  • D. J. W. Simpson
Original Paper


Switch-like behaviour in dynamical systems may be modelled by highly nonlinear functions, such as Hill functions or sigmoid functions, or alternatively by piecewise-smooth functions, such as step functions. Consistent modelling requires that piecewise-smooth and smooth dynamical systems have similar dynamics, but the conditions for such similarity are not well understood. Here we show that by smoothing out a piecewise-smooth system one may obtain dynamics that is inconsistent with the accepted wisdom — so-called Filippov dynamics — at a discontinuity, even in the piecewise-smooth limit. By subjecting the system to white noise, we show that these discrepancies can be understood in terms of potential wells that allow solutions to dwell at the discontinuity for long times. Moreover we show that spurious dynamics will revert to Filippov dynamics, with a small degree of stochasticity, when the noise magnitude is sufficiently large compared to the order of smoothing. We apply the results to a model of a dry-friction oscillator, where spurious dynamics (inconsistent with Filippov’s convention or with Coulomb’s model of friction) can account for different coefficients of static and kinetic friction, but under sufficient noise the system reverts to dynamics consistent with Filippov’s convention (and with Coulomb-like friction).


Dynamics Friction Switching White noise  Regularization Fokker-Planck Discontinuity Nonsmooth 


  1. 1.
    Aizerman, M.A., Pyatnitskii, E.S.: Fundamentals of the theory of discontinuous systems I, II. Automat. Remote Control 35, 1066–1079, 1242–1292 (1974)Google Scholar
  2. 2.
    Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111(4), 1525–1548 (2002)CrossRefGoogle Scholar
  3. 3.
    Baule, A., Cohen, E.G.D., Touchette, H.: A path integral approach to random motion with nonlinear friction. J. Phys. A 43(2), 025003 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baule, A., Touchette, H., Cohen, E.G.D.: Stick-slip motion of solids with dry friction subject to random vibrations and an external field. Nonlinearity 24, 351–372 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bender, C.M., Orszag, S.A.: Advanced mathematical methods for scientists and engineers I. Asymptotic methods and perturbation theory. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bengisu, M.T., Akay, A.: Stick-slip oscillations: dynamics of friction and surface roughness. J. Acoust. Soc. Am. 105(1), 194–205 (1999)CrossRefGoogle Scholar
  7. 7.
    Berry, M.V.: Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. R. Soc. A 422, 7–21 (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bliman, P.A., Sorine, M.: Easy-to-use realistic dry friction models for automatic control. In: Proceedings of 3rd European Control Conference, pp. 3788–3794 (1995)Google Scholar
  9. 9.
    Broucke, M.E., Pugh, C., Simic, S.: Structural stability of piecewise smooth systems. Comput. Appl. Math. 20(1–2), 51–90 (2001)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Buckdahn, R., Ouknine, Y., Quincampoix, M.: On limiting values of stochastic differential equations with small noise intensity tending to zero. Bull. Sci. Math. 133, 229–237 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Colombo, A., di Bernardo, M., Hogan, S.J., Jeffrey, M.R.: Bifurcations of piecewise smooth flows: perspectives, methodologies and open problems. Phys. D 241(22), 1845–1860 (2012)CrossRefMathSciNetGoogle Scholar
  12. 12.
    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)Google Scholar
  13. 13.
    di Bernardo, M., Johansson, K.H., Jönsson, U., Vasca, F.: On the robustness of periodic solutions in relay feedback systems. In: IFAC 15th Triennial World Congress, Barcelona, Spain (2002)Google Scholar
  14. 14.
    Dercole, F., Gragnani, A., Rinaldi, S.: Bifurcation analysis of piecewise smooth ecological models. Theor. Popul. Biol. 72, 197–213 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Feeny, B., Moon, F.: Chaos in a forced dry-friction oscillator: experiments and numerical modelling. J. Sound Vib. 170(3), 303–323 (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Feldmann, J.: Roughness-induced vibration caused by a tangential oscillating mass on a plate. J. Vib. Acoust. 134(4), 041,002 (2012)Google Scholar
  17. 17.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dortrecht (1988)CrossRefGoogle Scholar
  18. 18.
    Gardiner, C.W.: Stochastic Methods. A Handbook for the Natural and Social Sciences. Springer, New York (2009)zbMATHGoogle Scholar
  19. 19.
    de Gennes, P.G.: Brownian motion with dry friction. J. Stat. Phys. 119(5), 953–962 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Grasman, J., van Herwaarden, O.A.: Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  21. 21.
    Guran, A., Pfeiffer, F., Popp, K. (eds.): Dynamics with Friction: Modeling, Analysis and Experiment I & II, Series B, vol. 7. World Scientific, Singapore (1996)Google Scholar
  22. 22.
    Hájek, O.: Discontinuous differential equations, I. J. Differ. Equ. 32(2), 149–170 (1979)CrossRefzbMATHGoogle Scholar
  23. 23.
    Heading, J.: An Introduction to Phase-Integral Methods. Methuen, London, New York (1962)Google Scholar
  24. 24.
    Hermes, H.: Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, pp. 155–165. Elsevier, Amsterdam (1967)Google Scholar
  25. 25.
    Jeffrey, M.R.: Non-determinism in the limit of nonsmooth dynamics. Phys. Rev. Lett. 106(25), 254103 (2011)CrossRefGoogle Scholar
  26. 26.
    Jeffrey, M.R.: Errors and asymptotics in the dynamics of switching. submitted (2013)Google Scholar
  27. 27.
    Jeffrey, M.R., Champneys, A.R., di Bernardo, M., Shaw, S.W.: Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Phys. Rev. E 81(1), 016213–016222 (2010)CrossRefGoogle Scholar
  28. 28.
    Jeffrey, M.R., Hogan, S.J.: The geometry of generic sliding bifurcations. SIAM Rev. 53(3), 505–525 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Krim, J.: Friction at macroscopic and microscopic length scales. Am. J. Phys. 70, 890–897 (2002)CrossRefGoogle Scholar
  30. 30.
    Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bif. Chaos 13, 2157–2188 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Le Bot, A., Bou Chakra, E.: Measurement of friction noise versus contact area of rough surfaces weakly loaded. Tribol. Lett. 37, 273–281 (2010)CrossRefGoogle Scholar
  32. 32.
    Leine, R.I., Nijmeijer, H.: Dynamics and bifurcations of non-smooth mechanical systems. Lecture Notes in Applied and Computational Mathematics, vol. 18. Springer, Berlin (2004)Google Scholar
  33. 33.
    Oestreich, M., Hinrichs, N., Popp, K.: Bifurcation and stability analysis for a non-smooth friction oscillator. Arch. Appl. Mech. 66, 301–314 (1996)CrossRefzbMATHGoogle Scholar
  34. 34.
    Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. R 17, 1–62 (2005)Google Scholar
  35. 35.
    Piltz, S.H., Porter, M.A., Maini, P.K.: Prey switching with a linear preference trade-off. preprint arXiv:1302.6197 (2013)Google Scholar
  36. 36.
    Schuss, Z.: Theory and Applications of Stochastic Processes. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  37. 37.
    Siegert, A.J.: On the first passage time probability problem. Phys. Rev. 81(4), 617–623 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Simpson, D.J.W.: On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. Discret. Contin. Dyn. Syst. (2014)Google Scholar
  39. 39.
    Simpson, D.J.W., Kuske, R.: Stochastically perturbed sliding motion in piecewise-smooth systems. 1204.5792 (2012) Google Scholar
  40. 40.
    Simpson, D.J.W., Kuske, R.: The positive occupation time of Brownian motion with two-valued drift and asymptotic dynamics of sliding motion with noise. submitted (2013)Google Scholar
  41. 41.
    Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)zbMATHGoogle Scholar
  42. 42.
    Teixeira, M.A., Llibre, J., da Silva, P.R.: Regularization of discontinuous vector fields on \(R^3\) via singular perturbation. J. Dyn. Differ. Equ. 19(2), 309–331 (2007)CrossRefzbMATHGoogle Scholar
  43. 43.
    Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22, 212 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  45. 45.
    Various: special issue on dynamics and bifurcations of nonsmooth systems. Phys. D 241(22), 1825–2082 (2012)Google Scholar
  46. 46.
    Wojewoda, J., Andrzej, S., Wiercigroch, M., Kapitaniak, T.: Hysteretic effects of dry friction: modelling and experimental studies. Phil. Trans. R. Soc. A 366, 747–765 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK
  2. 2.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations