Nonlinear Dynamics

, Volume 76, Issue 2, pp 1379–1393 | Cite as

The pulse treatment of computer viruses: a modeling study

Original Paper

Abstract

Unlike new medical procedures, new antivirus software can be disseminated rapidly through the Internet and takes effect immediately after it is run. As a result, a considerable number of infected computers can be cured almost simultaneously. Consequently, it is of practical importance to understand how pulse treatment affects the spread of computer viruses. For this purpose, an impulsive malware propagation model is proposed. To the best of our knowledge, this is the first computer virus model that takes into account the effect of pulse treatment. The dynamic properties of this model are investigated comprehensively. Specifically, it is found that (a) the virus-free periodic solution is globally asymptotically stable when the basic reproduction ratio (BRR) is less than unity, (b) infections are permanent when the BRR exceeds unity, and (c) a locally asymptotically stable viral periodic solution bifurcates from the virus-free periodic solution when the BRR goes through unity. A close inspection of the influence of different model parameters on the BRR allows us to suggest some feasible measures of eradicating electronic infections.

Keywords

Computer virus Epidemic model Pulse treatment  Basic reproduction ratio Virus-free periodic solution Global stability Viral permanence Viral periodic solution Supercritical bifurcation 

References

  1. 1.
    Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley Education Publishers Inc., Boston, MA (2005)Google Scholar
  2. 2.
    Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35 (1987)CrossRefGoogle Scholar
  3. 3.
    Murray, W.H.: The application of epidemiology to computer viruses. Comput. Secur. 7(2), 130–150 (1988)CrossRefGoogle Scholar
  4. 4.
    Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, pp. 343–359. (1991)Google Scholar
  5. 5.
    Billings, L., Spears, W.M., Schwartz, I.B.: A unified prediction of computer virus spread in connected networks. Phys. Lett. A 297(3–4), 261–266 (2002)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Ren, J., Yang, X., Zhu, Q., Yang, L.X., Zhang, C.: A novel computer virus model and its dynamics. Nonlinear Anal. Real World Appl. 13(1), 376–384 (2012)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhu, Q., Yang, X., Ren, J.: Modeling and analysis of the spread of computer virus. Commun. Nonlinear Sci. Numer. Simulat. 17(12), 5117–5124 (2012)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: Propagation of computer virus under human intervention: a dynamical model. Discrete Dyn. Nat. Soc. 2012 (2012). Article ID 106950Google Scholar
  9. 9.
    Gan, C., Yang, X., Zhu, Q., Jin, J., He, L.: The spread of computer virus under the effect of external computers. Nonlinear Dyn. 73(3), 1615–1620 (2013)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gan, C., Yang, X., Liu, W., Zhu, Q.: A propagation model of computer virus with nonlinear vaccination probability. Commun. Nonlinear Sci. Numer. Simulat. 19(1), 92–100 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yuan, H., Chen, G.: Network virus-epidemic model with the point-to-group information propagation. Appl. Math. Comput. 206(1), 357–367 (2008)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yuan, H., Chen, G., Wu, J., Xiong, H.: Towards controlling virus propagation in information systems with point-to-group information sharing. Decis. Support Syst. 48(1), 57–68 (2009)CrossRefGoogle Scholar
  13. 13.
    Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217(21), 8438–8446 (2011)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Mishra, B.K., Saini, D.K.: SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model. 34(3), 710–715 (2010)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Yang, X., Yang, L.X.: Towards the epidemiological modeling of computer viruses. Discrete Dyn. Nat. Soc. 2012, 1–11 (2012). Article ID 259671MATHGoogle Scholar
  16. 16.
    Yang, L.X., Yang, X., Wen, L., Liu, J.: Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability. Discrete Dyn. Nat. Soc. 2012, 1–13 (2012). Article ID 693695MATHGoogle Scholar
  17. 17.
    Yang, L.-X., Yang, X., Wen, L., Liu, J.: A novel computer virus propagation model and its dynamics. Int. J. Comput. Math. 89(17), 2307–2314 (2012)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, M., Zhang, Z., Li, Q., Zhang, G.: An SLBRS model with vertical transmission of computer virus over Internet. Discrete Dyn. Nat. Soc. 2012 (2012). Article ID 693695Google Scholar
  19. 19.
    Yang, L.-X., Yang, X.: The spread of computer viruses under the influence of removable storage devices. Appl. Math. Comput. 219(8), 3914–3922 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yang, L.-X., Yang, X., Zhu, Q., Wen, L.: A computer virus model with graded cure rates. Nonlinear Anal. Real world Appl. 14(1), 414–422 (2013)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Yang, L.-X., Yang, X., Liu, J., Zhu, Q., Gan, C.: Epidemics of computer viruses: a complex-network approach. Appl. Math. Comput. 219(16), 8705–8717 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, C., Liu, W., Xiao, J., Zhao, Y.: Hopf bifurcation of an improved SLBS model under the influence of latent period. Math. Probl. Eng. 2013 (2013) Article ID 196214Google Scholar
  23. 23.
    Yang, L.X., Yang, X.: A new epidemic model of computer viruses. Commun. Nonlinear Sci. Numer. Simulat. 19(6), 1935–1944 (2014)Google Scholar
  24. 24.
    Muroya, Y., Li, H., Kuniya, T.: On global stability of a nonresident computer virus model. Acta Math. Sci. 19(6), 1935–1944 (2014)Google Scholar
  25. 25.
    Zhu, Q., Yang, X., Yang, L.-X., Zhang, X.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn. 73(3), 1433–1441 (2013)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Yang, L.-X., Yang, X.: The effect of infected external computers on the spread of viruses: a compartment modeling study. Phys. A 392(24), 6523–6535 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kephart, J.O., White, S.R.: Measuring and modeling computer virus prevalence. In: Proceedings IEEE Symposium on Security and Privacy, pp. 2–15 (1993)Google Scholar
  28. 28.
    Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel, C.E.C.J., Araujo, V.O.: Dynamic models for computer viruses. Comput. Secur. 27(7–8), 355–359 (2008)CrossRefGoogle Scholar
  29. 29.
    Piqueira, J.R.C., Araujo, V.O.: A modified epidemiological model for computer viruses. Appl. Math. Comput. 213(2), 355–360 (2009)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Toutonji, O.A., Yoo, S.-M., Park, M.: Stability analysis of VEISV propagation modeling for network worm attack. Appl. Math. Model. 36(6), 2751–2761 (2012)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Mishra, B.K., Jha, N.: Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Appl. Math. Comput. 190(2), 1207–1212 (2007)MATHCrossRefGoogle Scholar
  32. 32.
    Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188(2), 1476–1482 (2007)Google Scholar
  33. 33.
    Han, X., Tan, Q.: Dynamical behavior of computer virus on Internet. Appl. Math. Comput. 217(6), 2520–2526 (2010)Google Scholar
  34. 34.
    Ren, J., Yang, X., Yang, L.-X., Xu, Y., Yang, F.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45(1), 74–79 (2012)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Feng, L., Liao, X., Li, H., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56(7–8), 167–179 (2012)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhu, Q., Yang, X., Yang, L.-X., Zhang, C.: Optimal control of computer virus under a delayed model. Appl. Math. Comput. 218(23), 11613–11619 (2012)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Dong, T., Liao, X., Li, H.: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr. Appl. Anal. 2012 (2012). Article ID 841987Google Scholar
  38. 38.
    Yang, X., Mishra, B.K., Liu, Y.: Computer viruses: theory, model, and methods. Discrete Dyn. Nat. Soc. 2012 (2012). Article ID 473508Google Scholar
  39. 39.
    Zhang, C., Zhao, Y., Wu, Y., Deng, S.: A stochastic dynamic model of computer viruses. Discrete Dyn. Nat. Soc. 2012 (2012). Article ID 264874Google Scholar
  40. 40.
    Dequadros, C., Andrus, J., Olive, J.: Eradication of poliomyelitis: progree. Pediatr. Inf. Dis. J. 10, 222–229 (1991)CrossRefGoogle Scholar
  41. 41.
    Sabin, A.: Measles, killer of millions in developing countries: strategies of elimination and continuing control. Eur. J. Epidemiol. 7(1), 1–22 (1991)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Agur, Z., Cojocaru, L., Mazor, G., Anderson, R., Danon, Y.: Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90(24), 11698–11702 (1993)CrossRefGoogle Scholar
  43. 43.
    Zhou, Y., Liu, H.: Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 38(3–4), 299–308 (2003)MATHCrossRefGoogle Scholar
  44. 44.
    Liu, X., Takeuchi, Y., Iwami, S.: SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253(1), 1–11 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zhang, T., Teng, Z.: An SIRVS epidemic model with pulse vaccination strategy. J. Theor. Biol. 250(2), 375–381 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Li, Y., Cui, J.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simulat. 14(5), 2353–2365 (2009)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Jiang, G., Yang, Q.: Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination. Appl. Math. Comput. 215(3), 1035–1046 (2009)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Wei, H., Jiang, Y., Song, X., Su, G.H., Qiu, S.Z.: Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay. J. Comput. Appl. Math. 229(1), 302–312 (2009) Google Scholar
  49. 49.
    Meng, X., Chen, L., Wu, B.: A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Anal. Real World Appl. 11(1), 88–98 (2010)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Yao, Y., Guo, L., Guo, H., Yu, G., Gao, F., Tong, X.: Pulse quarantine strategy of internet worm propagation: modeling and analysis. Comput. Electr. Eng. 38(5), 1047–1061 (2012)CrossRefGoogle Scholar
  51. 51.
    Zhang, C., Zhao, Y., Wu, Y.: An impulse model for computer viruses. Discrete Dyn. Nat. Soc. 2012 (2012). Article ID 260962Google Scholar
  52. 52.
    Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)MATHCrossRefGoogle Scholar
  53. 53.
    Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific & Technical, New York (1993)MATHGoogle Scholar
  54. 54.
    Lakmeche, A., Arino, O.: Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dyn. Continuous Discrete Impuls. Syst. 7(2), 265–287 (2000)MATHMathSciNetGoogle Scholar
  55. 55.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. ACM SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)CrossRefGoogle Scholar
  56. 56.
    Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)CrossRefGoogle Scholar
  58. 58.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), (2001). Article ID 066117Google Scholar
  59. 59.
    Yang, L.X., Yang, X.: The spread of computer viruses over a reduced scale-free network. Phys. A. 396, 173–184 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of Computer ScienceChongqing UniversityChongqingChina
  2. 2.College of Mathematics and StatisticsChongqing UniversityChongqingChina

Personalised recommendations