Advertisement

Nonlinear Dynamics

, Volume 76, Issue 2, pp 931–954 | Cite as

Nonlinear control for teleoperation systems with time varying delay

  • S. IslamEmail author
  • P. X. Liu
  • A. El Saddik
Original Paper

Abstract

In this paper, we introduce delay-dependent control strategies for bilateral teleoperation systems in the presence of passive and constant input forces under time varying delay. We first design teleoperation systems where the local and remote sites are coupled by position signals of the master and slave manipulator. The design also combined undelayed position and velocity signals with nonlinear adaptive control terms to deal with the parametric uncertainties associated with the dynamical model of the master and slave manipulator. Then, we develop teleoperators by delaying position and velocity signals of the master and slave manipulator. Using Lyapunov–Krasovskii function, delay-dependent stability and tracking conditions for both teleoperators are developed in the presence of symmetrical and unsymmetrical time varying delays. The stability conditions are established in the presence of passive and constant human and environment interaction forces with the master and slave manipulators. Finally, simulation results are presented to demonstrate the validity of the theoretical development of the proposed designs for real-time teleoperation applications.

Keywords

Remote operation and control  Telehaptic Time varying delay Passive input forces Constant input forces 

Notes

Acknowledgments

Authors thank anonymous editor, associate editor, and reviewers for their thoughts and suggestion on our original submission which definitely improves the quality and presentation of this paper. This work is partially supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC) Research Fellowship, Canada Research Chairs Program and University of Ottawa Research Chair Program.

References

  1. 1.
    Lawrence, D.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9, 624–637 (1993)CrossRefGoogle Scholar
  2. 2.
    Sheridan, T.: Telerobotics. Automatica 25, 487–507 (1989)CrossRefGoogle Scholar
  3. 3.
    Marescaus, J., et al.: Translantic robot-assisted telesurgery. Nature 413, 379–380 (2001)CrossRefGoogle Scholar
  4. 4.
    Batlle, J., Ridao, P., Salvi, J.: Integration of a teleoperated robotic arm with vision systems using CORBA compatible software. In: Proceedings of 30th International Symposium on Automotive Technology and Automation, Florence, Italy, pp. 371–378 (1997)Google Scholar
  5. 5.
    Ben-Porat, O., Shoham, M., Meyer, J.: Control design and task performance in endoscopic teleoperation. Presence 9, 256–267 (2000)CrossRefGoogle Scholar
  6. 6.
    Arbeille, P., Ruiz, J., Chevillot, M., Perrotin, F., Herve, P., Vieyres, P., Poisson, G.: Teleoperated robotic arm for echographic diagnosis in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 24, 242–246 (2004)CrossRefGoogle Scholar
  7. 7.
    Arbeille, P., Poisson, G., Vieyres, P., Ayoub, J., Porcher, M., Boulay, J.: Echographic examination in isolated sites controlled from an expert center using a 2D echograph guided by a teleoperated robotic arm. Ultrasound Med. Biol. 29, 993–1000 (2003)CrossRefGoogle Scholar
  8. 8.
    Intuitive Surgical: Da Vinci Surgical System. http://www.intusurg.com/products/da-vinci.html
  9. 9.
    International Submarine Engineering Ltd.: ATOMAutonomous/Teleoperated Operations Manipulator. [Online].Google Scholar
  10. 10.
    Manganelli, R., Chinello, F., Formaglio, A., Prattichizzo, D.: A teleoperation system for micro-invasive brain surgery. Paladyn J. Behav. Robot. 1(4), 198–203 (2011)CrossRefGoogle Scholar
  11. 11.
    Janabi-Sharifi, F., Hassanzadeh, I.: Experimental analysis of mobile-robot teleoperation via shared impedance control. IEEE Trans. Syst. Man Cybern. B 41, 591–606 (2011)Google Scholar
  12. 12.
    Lam, T. M., Mulder, M., Paassen, M. M., Collision avoidance in UAV tele-operation with time delay. In: Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, pp. 997–1002 (2007)Google Scholar
  13. 13.
    Arcara, P., Melchiorri, C.: Control schemes for teleoperation with time delay: a comparative study. Robot. Auton. Syst. 38, 49–64 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hokayem, P., Spong, M.: Bilateral teleoperation: an historical survey. Automatica 42, 2035–2057 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ferrell, W.: Delayed force feedback. Hum. Factors 8, 449–455 (1966)Google Scholar
  16. 16.
    Polushin I.: Force reflecting teleoperation over wide-area networks. Ph.D. Thesis, Carleton University (2009)Google Scholar
  17. 17.
    Alise, M., et al.: On extending the wave variable method to multiple-DOF teleoperation systems. IEEE/ASME Trans. Mechatron. 14, 55–63 (2009)CrossRefGoogle Scholar
  18. 18.
    Munir, S., Book, W.: Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7, 124–133 (2002)CrossRefGoogle Scholar
  19. 19.
    Hua, C., Liu, P.: Convergence analysis of teleoperation systems with unsymmetric time-varying delays. IEEE Trans. Circuits Syst. II 56, 240–244 (2009)CrossRefGoogle Scholar
  20. 20.
    Niemeyer, G., Slotine, J.: Telemanipulation with time delays. Int. J. Robot. Res. 23, 873–890 (2004)CrossRefGoogle Scholar
  21. 21.
    Anderson, R., Spong, M.: Asymptotic stability of force reflecting teleoperators with time delay. Int. J. Robot. Res. 11, 135–149 (1992)CrossRefGoogle Scholar
  22. 22.
    Lozano, R., Chopra, N., Spong, M.: Convergence analysis of bilateral teleoperation with constant human input. In: Proceedings of American Control Conference, pp. 1443–1448 (2007)Google Scholar
  23. 23.
    Forouzantabar, A., Talebi, H.A., Sedigh, A.K.: Adaptive neural network control of bilateral teleoperation with constant time delay. Nonlinear Dyn. 67, 1123–1134 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Chopra, N., Spong, M., Hirche, S., Buss, M.: Bilateral teleoperation over the internet: the time varying delay problem. In: Proceedings of the American Control Conference, pp. 155–160 (2003)Google Scholar
  25. 25.
    Pan, Y.-J., Canudas-de-Wit, C., Sename, O.: A new predictive approach for bilateral teleoperation with applications to drive-by-wire systems. IEEE Trans. Robot. 22, 1146–1162 (2006)CrossRefGoogle Scholar
  26. 26.
    Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34, 494–501 (1989)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Park, J., Cho, H.: Sliding mode control of bilateral teleoperation systems with force-reflection on the internet. In: Proceedings of the EEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1187–1192 (2000)Google Scholar
  28. 28.
    Polushin, I., Liu, P., Lung, C.-H.: On the model-based approach to nonlinear networked control systems. Automatica 44, 2409–2414 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Oboe, R.: Web-interfaced, force-reflecting teleoperation systems. IEEE Trans. Ind. Electron. 48, 1257–1265 (2001)CrossRefGoogle Scholar
  30. 30.
    Leung, G., Francis, B., Apkarian, J.: Bilateral controller for teleoperators with time delay via mu-synthesis. IEEE Trans. Robot. Autom. 11, 105–116 (1995)CrossRefGoogle Scholar
  31. 31.
    Huijun, L., Aiguo, S.: Virtual environment modeling and correction for force reflecting teleoperation with time delay. IEEE Trans. Ind. Electron. 54, 1227–1233 (2007)CrossRefGoogle Scholar
  32. 32.
    Lee, D., Spong, M.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22, 269–281 (2006)CrossRefGoogle Scholar
  33. 33.
    Lee, D., Huang, K.: Passive-set-position-modulation framework for interactive robotic systems. IEEE Trans. Robot. 26, 354–369 (2010)CrossRefGoogle Scholar
  34. 34.
    Wu, J., Shi, Y., Huang, J., Constantinescu, D.: Stochastic stabilization for bilateral teleoperation over networks with probabilistic delays. Mechatronics 22, 1050–1059 (2012)CrossRefGoogle Scholar
  35. 35.
    Jazayeri, A., Tavakoli, M.: Absolute stability analysis of sampled-data scaled bilateral teleoperation systems. Control Eng. Pract. 21(8), 1053–1064 (2013)CrossRefGoogle Scholar
  36. 36.
    Yana, Y. Hua, C.-C., Guan, X.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system fuzzy systems. IEEE Trans. Fuzzy Syst. 99, to appear (2013)Google Scholar
  37. 37.
    Hua, C.-C., Yang, Y., Guan, X.: Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay. Neurocomputing 113, 204212 (2013)CrossRefGoogle Scholar
  38. 38.
    Yang, X., Hua, C.-C., Guan, X.: New stability criteria for networked teleoperation system. Inform. Sci. 233(1), 244–254 (2013)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Ye, Y., Pan, Y.-J.: Hilliard T: Bilateral teleoperation with time-varying delay: a communication channel passification approach. IEEE/ASME Trans. Mechatron. 18(4), 1431–1434 (2013)CrossRefGoogle Scholar
  40. 40.
    Huang, J., Shi, Y., Wu, J.: Transparent virtual coupler design for networked haptic systems with a mixed virtual wall. IEEE/ASME Trans. Mechatron. 17, 480–487 (2012)CrossRefGoogle Scholar
  41. 41.
    Li, Z., et al.: Neural-adaptive control of single-master multiple slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainty. IEEE Trans. Neural Network and Learning. System 24(9), 1400–1413 (2013)Google Scholar
  42. 42.
    Li, Z., et al.: Trilateral teleoperation of adaptive fuzzy force/motion control for nonlinear teleoperators with communication random delays. IEEE Trans. Fuzzy Syst. 21(4), 610–624 (2013)CrossRefGoogle Scholar
  43. 43.
    Li, Z., et al.: Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 19(4), 745–757 (2011)CrossRefGoogle Scholar
  44. 44.
    Li, Z., et al.: Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays. Int. J. Innov. Comput. Inform. Control 9(2), 753–767 (2013)Google Scholar
  45. 45.
    Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z., Preitl, S.: Simulation and control for telerobots in space medicine. Acta Astronaut. 181(1), 390–402 (2012)CrossRefGoogle Scholar
  46. 46.
    Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z.: Controller design solutions for long distance telesurgical applications. Int. J. Artif. Intell. 6(S11), 48–71 (2011)Google Scholar
  47. 47.
    Haidegger, T., Kovacs, L., Precup, R.-E., Benyo, B., Benyo, Z.: Cascade control for telerobotic systems serving space medicine. In: 18th IFAC World Congress, Italy, August 28–September 2, pp. 3759–3764 (2011)Google Scholar
  48. 48.
    Burns, C., Wang, R.F., Stipanovic, D.: A study of human and receding horizon controller performance of a remote navigation task with obstacles and feedback delays. Paladyn J. Behav. Robot. 2, 44–63 (2011)CrossRefGoogle Scholar
  49. 49.
    Burns, C., Zearing, J., Wang, R.F., Stipanovic, D.M.: Autonomous and semiautonomous control simulator. In: Proceedings of the 2010 AAAI Spring Symposium, Technical, Report SS-10-04Google Scholar
  50. 50.
    Burns, C.R., Wang, R.F., Stipanovic, D.M.: Study of the impact of delay on human remote navigators with application to receding horizon control. Paladyn J. Behav. Robot. 3(2), 63–74 (2012)Google Scholar
  51. 51.
    Widyotriatmo, A., Pamosoaji, A.K., Hong, K.-S.: Control architecture of an autonomous material handling vehicle. Int. J. Artif. Intell. 10(S13), 139–153 (2013)Google Scholar
  52. 52.
    Burridge, R.R., Hambuchen, K.A.: Using prediction to enhance remote robot supervision across time delay. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5628–5634 (2009) Google Scholar
  53. 53.
    Han, C., Liu, X., Zhang, H.: Robust model predictive control for continuous uncertain systems with state delay. J. Control Theory Appl. 6, 189–194 (2008)Google Scholar
  54. 54.
    Kelly, R., Santibanez, V., Loria, A.: Control of Robot Manipulators in Joint Space (Advanced Textbooks in Control and Signal Processing). Springer-Verlag, New York (2005)Google Scholar
  55. 55.
    Islam, S., Liu, P.X., El Saddik, A.: Model based telehaptic system with time varying communication delay. In: Proceedings of IEEE International Conference on Virtual Environments, Human–Computer Interfaces and Measurement Systems, September 19–21, Ottawa, Canada, pp. 1–6 (2011)Google Scholar
  56. 56.
    Islam, S., Liu, P.X., El Saddik, A.: Teleoperation systems with symmetrical and unsymmetrical time varying communication delay. IEEE Trans. Instrum. Meas. 62(11), 2943–2953 (2013)CrossRefGoogle Scholar
  57. 57.
    Schwartz, H., Islam, S.: An evaluation of adaptive robot control via velocity estimated feedback. In: Proceedings on Control and Applications Montreal, Quebec, May 30–June 1, pp. 125–133 (2007)Google Scholar
  58. 58.
    Islam, S.: Lyapunov-based hybrid control for robust trajectory tracking of robotic manipulator. Ph.D. Thesis, OCIECE, Carleton University, Ottawa, Canada (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Information Technology and Engineering (SITE)University of OttawaOttawaCanada
  2. 2.Department of Systems and Computer EngineeringCarleton UniversityOttawaCanada

Personalised recommendations