Nonlinear Dynamics

, Volume 76, Issue 1, pp 47–55 | Cite as

Nonlinear synchronization on connected undirected networks

Article

Abstract

In this paper, we give sufficient conditions to have a complete synchronization of oscillators in connected undirected networks. The oscillators we are considering are not necessarily identical and the synchronization terms can be nonlinear. Many results in the literature deal with sufficient conditions insuring complete synchronization. This is a difficult problem since such conditions require to take into account the individual dynamics of the oscillators and also the graph topology. In this paper, we extend one of these results, the connection graph stability method, to nonlinear coupling functions and we also give an existence condition of trajectories of the oscillators. The sufficient conditions for synchronization presented in this paper are based on the study of a Lyapunov function and on the use of pseudometrics which enable us to link network dynamics and graph theory. These results are applied to a network of Chua’s oscillators and lead to an explicit condition insuring the complete synchronization of the oscillators.

Keywords

Nonlinear systems Synchronization Networks Graph topology 

References

  1. 1.
    Afraimovich, V., Verichev, N., Rabinovich, M.: Stochastic synchronization of oscillation in dissipative systems. Radiophys. Quantum Electron. 29, 795–803 (1986). doi:10.1007/BF01034476 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Belykh, I., Belykh, V., Hasler, M.: Generalized connection graph method for synchronization in asymmetrical networks. Physica D 224(1–2), 42–51 (2006). doi:10.1016/j.physd.2006.09.014 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Belykh, I., Belykh, V., Hasler, M.: Synchronization in asymmetrically coupled networks with node balance. Chaos 16(1), 015102 (2006). doi:10.1063/1.2146180 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Belykh, I., Hasler, M., Lauret, M., Nijmeijer, H.: Synchronization and graph topology. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(11), 3423–3433 (2005). doi:10.1142/S0218127405014143 CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195(1–2), 159–187 (2004). doi:10.1016/j.physd.2004.03.012 CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chua, L.O., Wu, C.W., Huang, A., Zhong, G.Q.: A universal circuit for studying and generating chaos. I. Routes to chaos. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(10), 732–744 (1993). doi:10.1109/81.246149 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chua, L.O., Wu, C.W., Huang, A., Zhong, G.Q.: A universal circuit for studying and generating chaos. II. Strange attractors. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(10), 745–761 (1993). doi:10.1109/81.246150 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69(1), 32–47 (1983). doi:10.1143/PTP.69.32 CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Kılıç, R.: A Practical Guide for Studying Chua’s Circuits. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 71. World Scientific, Hackensack (2010). doi:10.1142/9789814291149 Google Scholar
  10. 10.
    Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 31(12), 1055–1058 (1984). doi:10.1109/TCS.1984.1085459 CrossRefMATHGoogle Scholar
  11. 11.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990). doi:10.1103/PhysRevLett.64.821 CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998). doi:10.1103/physrevlett.80.2109 CrossRefGoogle Scholar
  13. 13.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003) Google Scholar
  14. 14.
    Rosenblum, M., Pikovsky, A., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193–4196 (1997) CrossRefGoogle Scholar
  15. 15.
    Sprott, J.C.: Chaotic dynamics on large networks. Chaos 18(2), 023135 (2008). doi:10.1063/1.2945229 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wintner, A.: The non-local existence problem of ordinary differential equations. Am. J. Math. 67(2), 277–284 (1945) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Wu, C.: Synchronization in networks of nonlinear dynamical systems coupled via a directed graph. Nonlinearity 18, 1057 (2005) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Wu, C., Chua, L.: Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42(8), 430–447 (1995). doi:10.1109/81.404047 CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 41. World Scientific, River Edge (2002). doi:10.1142/9789812778420 MATHGoogle Scholar
  20. 20.
    Xia, Q.: The geodesic problem in quasimetric spaces. J. Geom. Anal. 19(2), 452–479 (2009). doi:10.1007/s12220-008-9065-4 CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Zhou, J., Lu, J.a., Lü, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44(4), 996–1003 (2008). doi:10.1016/j.automatica.2007.08.016 CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.LMAH (Laboratoire de Mathématiques Appliquées du Havre)Université du HavreLe HavreFrance

Personalised recommendations