Nonlinear Dynamics

, Volume 75, Issue 3, pp 549–560 | Cite as

Control and synchronization of chaos systems using time-delay estimation and supervising switching control

  • Seung-jae Cho
  • Maolin Jin
  • Tae-Yong Kuc
  • Jin S. Lee
Original Paper


In this paper, we present a new technique, developed using time-delay estimation (TDE) and supervising switching control (SSC), for the control and synchronization of chaos systems. The proposed technique consists of three units: a time-delay estimation unit that cancels system dynamics, a pole placement control unit that shapes error dynamics, and an SSC unit that is activated when the system dynamics are rapidly changing. We prove the stability of the closed-loop system using the Lyapunov analysis method. To verify the control and synchronization performance of the proposed technique (TDE-SSC), we compare it with TDC using numerical simulation. Our results indicate that the proposed scheme is an easily understood, numerically efficient, robust, and accurate solution for the control and synchronization of chaos systems.


Time-delay control Chaos synchronization Lorenz system Lü system Arneodo system Supervising switching control Time-delay estimation 



This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the “IT Consilience Creative Program” support program supervised by the NIPA (National IT Industry Promotion Agency)(C1515-1121-0003).


  1. 1.
    Singer, J., Wang, Y.-Z., Bau, H.H.: Controlling a chaotic system. Phys. Rev. Lett. 66(9), 1123–1125 (1991) CrossRefGoogle Scholar
  2. 2.
    Harb, A.M.: Nonlinear chaos control in a permanent magnet reluctance machine. Chaos Solitons Fractals 19(5), 1217–1224 (2004) CrossRefzbMATHGoogle Scholar
  3. 3.
    Kellert, S.H.: In The Wake of Chaos: Unpredictable Order in Dynamic Systems. University of Chicago Press, Chicago (1994) Google Scholar
  4. 4.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, D., Zhang, R., Sprott, J.C., Ma, X.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn. 70(2), 1549–1561 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gholami, A., Markazi, A.H.D.: A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems. Nonlinear Dyn. 70(3), 2095–2105 (2012) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R. Jr., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69(4), 1837–1857 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Faieghi, M., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72(1–2), 301–309 (2013). doi: 10.1007/s11071-012-0714-6 CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kwon, O.M., Son, J.W., Lee, S.M.: Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control. Nonlinear Dyn. 72(1–2), 129–140 (2012). doi: 10.1007/s11071-012-0697-3 MathSciNetGoogle Scholar
  10. 10.
    Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C.: Adaptive synchronization for uncertain complex dynamical network using fuzzy disturbance observer. Nonlinear Dyn. 71(1–2), 223–234 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Pan, I., Korre, A., Das, S., Durucan, S.: Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn. 70(4), 2445–2461 (2012) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Yu, J., Yu, H., Chen, B., Gao, J., Qin, Y.: Direct adaptive neural control of chaos in the permanent magnet synchronous motor. Nonlinear Dyn. 70(3), 1879–1887 (2012) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Aghababa, M.P., Aghababa, H.P.: Chaos suppression of rotational machine systems via finite-time control method. Nonlinear Dyn. 69(4), 1881–1888 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Aghababa, M.P., Aghababa, H.P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69(4), 1903–1914 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. J. Franklin Inst. 349, 2875–2888 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of non-autonomous uncertain governor systems with input nonlinearities. J. Vib. Control (2012). doi: 10.1177/1077546312463715 Google Scholar
  17. 17.
    Aghababa, M.P., Aghababa, H.P.: Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs. Nonlinear Dyn. 73, 1–14 (2013) CrossRefGoogle Scholar
  18. 18.
    Aghababa, M.P., Aghababa, H.P.: Stabilization of gyrostat system with dead-zone nonlinearity in control input. J. Vib. Control (2013). doi: 10.1177/1077546313486506 Google Scholar
  19. 19.
    Aghababa, M.P.: Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int. J. Control 86(10), 1744–1756 (2013). doi: 10.1080/00207179.2013.796068 CrossRefGoogle Scholar
  20. 20.
    Yang, C.H., Li, S.Y., Tsen, P.C.: Synchronization of chaotic system with uncertain variable parameters by linear coupling and pragmatical adaptive tracking. Nonlinear Dyn. 70(3), 2187–2202 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. J. Dyn. Syst. Meas. Control 112(1), 133–142 (1990) CrossRefzbMATHGoogle Scholar
  22. 22.
    Hsia, T.C., Lasky, T.A., Guo, Z.: Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 38(1), 21–25 (1991) CrossRefGoogle Scholar
  23. 23.
    Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008) CrossRefGoogle Scholar
  24. 24.
    Jin, M., Lee, J.O., Chang, P.H., Choi, C.T.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009) CrossRefGoogle Scholar
  25. 25.
    Jin, M., Jin, Y., Chang, P.H., Choi, C.: High-accuracy tracking control of robot manipulators using time delay estimation and terminal sliding mode. Int. J. Adv. Robot. Syst. 8(4), 65–78 (2011) Google Scholar
  26. 26.
    Jin, M., Chang, P.H.: Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems. Chaos Solitons Fractals 41(5), 2672–2680 (2009) CrossRefzbMATHGoogle Scholar
  27. 27.
    Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002) CrossRefzbMATHGoogle Scholar
  28. 28.
    Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982) CrossRefzbMATHGoogle Scholar
  29. 29.
    Arneodo, A., Coullet, P., Spiegel, E., Tresser, C.: Asymptotic chaos. Physica D 14(3), 327–347 (1985) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Koronovskii, A.A., Moskalenko, O.I., Hramov, A.E.: On the use of chaotic synchronization for secure communication. Phys. Usp. 52(12), 1213–1238 (2009) CrossRefGoogle Scholar
  31. 31.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963) CrossRefGoogle Scholar
  32. 32.
    Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002) CrossRefzbMATHGoogle Scholar
  33. 33.
    Steven, C.C., Raymond, P.C.: Numerical Methods for Engineers. McGraw-Hill, New York (2001) Google Scholar
  34. 34.
    Khalil, H.: Nonlinear Systems. Prentice Hall, New York (2002) zbMATHGoogle Scholar
  35. 35.
    Utkin, V.I., Guldner, J., Jingxin, S.: Sliding Mode Control in Electromechanical Systems. Taylor & Francis, London (2002) Google Scholar
  36. 36.
    Vincent, T.L., Yu, J.: Control of a chaotic system. Dyn. Control 1(1), 35–52 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Yang, S.K., Chen, C.L., Yau, H.T.: Control of chaos in Lorenz system. Chaos Solitons Fractals 13(4), 767–780 (2002) CrossRefzbMATHGoogle Scholar
  38. 38.
    Ehrhard, P., Muller, U.: Dynamical behaviour of natural convection in a single-phase loop. J. Fluid Mech. 217, 487–518 (1990) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Seung-jae Cho
    • 1
  • Maolin Jin
    • 2
  • Tae-Yong Kuc
    • 3
  • Jin S. Lee
    • 1
  1. 1.POSTECHPohangKorea
  2. 2.RISTPohangKorea
  3. 3.SKKUSuwonKorea

Personalised recommendations