Advertisement

Nonlinear Dynamics

, Volume 75, Issue 1–2, pp 283–287 | Cite as

Discrete fractional logistic map and its chaos

  • Guo-Cheng Wu
  • Dumitru Baleanu
Original Paper

Abstract

A discrete fractional logistic map is proposed in the left Caputo discrete delta’s sense. The new model holds discrete memory. The bifurcation diagrams are given and the chaotic behaviors are numerically illustrated.

Keywords

Discrete fractional calculus Chaos Time scale Caputo delta difference 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11301257) and the Innovative Team Program of the Neijiang Normal University.

References

  1. 1.
    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42, 485–490 (1995) CrossRefGoogle Scholar
  2. 2.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rossler equations. Physica A 341, 55–61 (2004) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Atici, F.M., Senguel, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Holm, M.T.: The Laplace transform in discrete fractional calculus. Comput. Math. Appl. 62, 1591–1601 (2011) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602–1611 (2011) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13, 574–582 (2011) MATHMathSciNetGoogle Scholar
  10. 10.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976) CrossRefGoogle Scholar
  11. 11.
    Chen, F.L., Luo, X.N., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011, 713201 (2011). 12 pages MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information ScienceNeijiang Normal UniversityNeijiangP.R. China
  2. 2.College of Water Resource and HydropowerSichuan UniversityChengduP.R. China
  3. 3.Department of Chemical and Materials Engineering, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Institute of Space SciencesMagurele-BucharestRomania
  5. 5.Department of Mathematics and Computer Sciences, Faculty of Arts and SciencesCankaya UniversityBalgat, AnkaraTurkey

Personalised recommendations