Nonlinear Dynamics

, Volume 74, Issue 4, pp 1191–1202 | Cite as

Dynamic analysis of earthquake phenomena by means of pseudo phase plane

  • António M. Lopes
  • J. A. Tenreiro Machado
Original Paper


This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.


Pseudo Phase Plane Pearson’s correlation Optimal time delay Seismic event 


  1. 1.
    Ghobarah, A., Saatcioglu, M., Nistor, I.: The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure. Eng. Struct. 28, 312–326 (2006) CrossRefGoogle Scholar
  2. 2.
    Marano, K., Wald, D., Allen, T.: Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Nat. Hazards 52, 319–328 (2010) CrossRefGoogle Scholar
  3. 3.
    Lee, S., Davidson, R., Ohnishi, N., Scawthorn, C.: Fire following earthquake—reviewing the state-of-the-art modelling. Earthq. Spectra 24, 933–967 (2008) CrossRefGoogle Scholar
  4. 4.
    Bird, J.F., Bommer, J.J.: Earthquake losses due to ground failure. Eng. Geol. 75, 147–179 (2004) CrossRefGoogle Scholar
  5. 5.
    Anderson, D.L.: How many plates? Geology 30, 411–414 (2002) CrossRefGoogle Scholar
  6. 6.
    Sornette, D., Pisarenko, V.: Fractal plate tectonics. Geophys. Res. Lett. (2003). doi: 10.1029/2002GL015043 Google Scholar
  7. 7.
    Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L., Ghattas, O.: The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329, 1033–1038 (2010) CrossRefGoogle Scholar
  8. 8.
    Bellahsen, N., Faccenna, C., Funiciello, F.: Dynamics of subduction and plate motion in laboratory experiments: insights into the “plate tectonics” behavior of the Earth. J. Geophys. Res. (2005). doi: 10.1029/2004JB002999 Google Scholar
  9. 9.
    Bhattacharya, P., Chakrabarti, B.K., Kamal: A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data. J. Phys. Conf. Ser. 319, 012004 (2011) CrossRefGoogle Scholar
  10. 10.
    Carlson, J.M., Langer, J.S., Shaw, B.E.: Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994) CrossRefzbMATHGoogle Scholar
  11. 11.
    De Rubeis, V., Hallgass, R., Loreto, V., Paladin, G., Pietronero, L., Tosi, P.: Self-affine asperity model for earthquakes. Phys. Rev. Lett. 76, 2599–2602 (1996) CrossRefGoogle Scholar
  12. 12.
    Lopes, A.M., Tenreiro Machado, J.A., Pinto, C.M.A., Galhano, A.M.S.F.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. (2013). doi: 10.1016/j.camwa.2013.02.003 MathSciNetGoogle Scholar
  13. 13.
    Sobolev, G.A.: Seismicity dynamics and earthquake predictability. Nat. Hazards Earth Syst. Sci. 11, 445–458 (2011) CrossRefGoogle Scholar
  14. 14.
    Bak, P., Tang, S.: Earthquakes as self-organized critical phenomenon. J. Geophys. Res., Solid Earth 94, 15635–15637 (1989) CrossRefGoogle Scholar
  15. 15.
    Chelidze, T., Kolesnikov, Y., Matcharashvili, T.: Seismological criticality concept and percolation model of fracture. Geophys. J. Int. 164, 125–136 (2006) CrossRefGoogle Scholar
  16. 16.
    Hainzl, S., Zoller, G., Kurths, J., Zschau, J.: Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality. Geophys. Res. Lett. 27, 597–600 (2000) CrossRefGoogle Scholar
  17. 17.
    Harris, R.A., Day, S.M.: Dynamics of fault interaction: parallel strike-slip faults. J. Geophys. Res., Solid Earth 98, 4461–4472 (1993) CrossRefGoogle Scholar
  18. 18.
    Stakhovsky, I.R.: Self-similar seismogenic structure of the crust: a review of the problem and a mathematical model. Izvest. Phys. Solid Earth 43, 1012–1023 (2007) CrossRefGoogle Scholar
  19. 19.
    Sobolev, G., Spetzler, H., Koltsov, A., Chelidze, T.: An experimental study of triggered stick-slip. Pure Appl. Geophys. 140, 79–94 (1993) CrossRefGoogle Scholar
  20. 20.
    Scholz, C.H.: Large earthquake triggering, clustering, and the synchronization of faults. Bull. Seismol. Soc. Am. 100, 901–909 (2010) CrossRefGoogle Scholar
  21. 21.
    Hallgass, R., Loreto, V., Mazzella, O., Paladin, G., Pietronero, L.: Earthquake statistics and fractal faults. Phys. Rev. E 56, 1346–1356 (1997) CrossRefGoogle Scholar
  22. 22.
    Sarlis, N.V., Christopoulos, S.-R.G.: Natural time analysis of the centennial earthquake catalog. Chaos 22, 023123 (2012) CrossRefGoogle Scholar
  23. 23.
    Turcotte, D.L., Malamud, B.D.: Earthquakes as a complex system. Int. Geophys. Ser. 81, 209–227 (2002) CrossRefGoogle Scholar
  24. 24.
    Kanamori, H., Brodsky, E.: The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Stein, S., Liu, M., Calais, E., Li, Q.: Mid-continent earthquakes as a complex system. Seismol. Res. Lett. 80, 551–553 (2009) CrossRefGoogle Scholar
  26. 26.
    Lennartz, S., Livina, V.N., Bunde, A., Havlin, S.: Long-term memory in earthquakes and the distribution of interoccurrence times. Europhys. Lett. 81, 69001 (2008) CrossRefGoogle Scholar
  27. 27.
    El-Misiery, A.E.M., Ahmed, E.: On a fractional model for earthquakes. Appl. Math. Comput. 178, 207–211 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pinto, C.M.A., Lopes, A.M., Tenreiro Machado, J.A.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17, 3558–3578 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sornette, D., Knopoff, L., Kagan, Y., Vanneste, C.: Rank-ordering statistics of extreme events: application to the distribution of large earthquakes. J. Geophys. Res. 101, 13883–13893 (1996) CrossRefGoogle Scholar
  30. 30.
    Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944) Google Scholar
  31. 31.
    Christensen, K., Olami, Z.: Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model for earthquakes. J. Geophys. Res. 97, 8729–8735 (1992) CrossRefGoogle Scholar
  32. 32.
    Omori, F.: On the aftershocks of earthquakes. J. Coll. Sci. 7, 111–200 (1894) Google Scholar
  33. 33.
    Utsu, T., Ogata, Y., Matsuura, R.S.: The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43, 1–33 (1995) CrossRefGoogle Scholar
  34. 34.
    Reasenberg, P.A., Jones, L.M.: Earthquake hazard after a mainshock in California. Science 243, 1173–1176 (1989) CrossRefGoogle Scholar
  35. 35.
    Lindman, M., Lund, B., Roberts, R., Jonsdottir, K.: Physics of the Omori law: inferences from interevent time distributions and pore pressure diffusion modelling. Tectonophysics 424, 209–222 (2006) CrossRefGoogle Scholar
  36. 36.
    Chakrabarti, B.K., Stinchcombe, R.B.: Stick-slip statistics for two fractal surfaces: a model for earthquakes. Physica A 270, 27–34 (1999) CrossRefGoogle Scholar
  37. 37.
    Yang, D., Yang, P., Zhang, C.: Chaotic characteristic analysis of strong earthquake ground motions. Int. J. Bifurc. Chaos 22, 1250045 (2012) CrossRefGoogle Scholar
  38. 38.
    Okubo, P.G., Aki, K.: Fractal geometry in the San Andreas fault system. J. Geophys. Res. 92, 345–355 (1987) CrossRefGoogle Scholar
  39. 39.
    Sornette, A., Sornette, D.: Self-organized criticality and earthquakes. Europhys. Lett. 9, 197–202 (1989) CrossRefGoogle Scholar
  40. 40.
    Shahin, A.M., Ahmed, E., Elgazzar, A.S., Omar, Y.A.: On fractals and fractional calculus motivated by complex systems. arXiv:0901.3618v1 [nlin.AO]
  41. 41.
    Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomena. Physica A 265, 535–546 (1999) CrossRefGoogle Scholar
  42. 42.
    Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, London (1993) zbMATHGoogle Scholar
  43. 43.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) zbMATHGoogle Scholar
  44. 44.
    Kilbas, A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) zbMATHGoogle Scholar
  45. 45.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing, Singapore (2012) Google Scholar
  46. 46.
    Lima, M.F.M., Tenreiro Machado, J.A.: Representation of robotic fractional dynamics in the pseudo phase plane. Acta Mech. Sin. 27, 28–35 (2011) CrossRefzbMATHGoogle Scholar
  47. 47.
    Tenreiro Machado, J.A.: Accessing complexity from genome information. Commun. Nonlinear Sci. Numer. Simul. 17, 2237–2243 (2012) CrossRefGoogle Scholar
  48. 48.
    Lima, M.F.M., Tenreiro Machado, J.A., Costa, A.C.: A multidimensional scaling analysis of musical sounds based on pseudo phase plane. Abstr. Appl. Anal. (2012). doi: 10.1155/2012/436108 MathSciNetGoogle Scholar
  49. 49.
    Duarte, F.B., Tenreiro Machado, J.A., Duarte, G.M.: Dynamics of the Dow Jones and the Nasdaq stock indexes. Nonlinear Dyn. 61, 691–705 (2010) CrossRefzbMATHGoogle Scholar
  50. 50.
    International Seismological Centre On-line Bulletin, Internatl Seis Cent, Thatcham, United Kingdom (2010). Accessed 12 June 2013
  51. 51.
    Young, J.B., Presgrave, B.W., Aichele, H., Wiens, D.A., Flinn, E.A.: The Flinn-Engdahl regionalisation scheme: the 1995 revision. Phys. Earth Planet. Inter. 96, 223–297 (1996) CrossRefGoogle Scholar
  52. 52.
    Flinn, E.A., Engdahl, E.R., Hill, A.R.: Seismic and geographical regionalization. Bull. Seismol. Soc. Am. 64, 771–993 (1974) Google Scholar
  53. 53.
    Flinn, E.A., Engdahl, E.R.: A proposed basis for geographical and seismic regionalization. Rev. Geophys. 3, 123–149 (1965) CrossRefGoogle Scholar
  54. 54. Accessed 14 April 2013
  55. 55.
    Tenreiro Machado, J.A., Duarte, G.M., Duarte, F.B.: Identifying economic periods and crisis using the multidimensional scaling. Nonlinear Dyn. 63, 611–622 (2011) CrossRefGoogle Scholar
  56. 56.
    Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. 898, 366–381 (1981) MathSciNetGoogle Scholar
  57. 57.
    International Seismological Centre, On-line Bulletin,, Internatl. Seis. Cent., Thatcham, United Kingdom, 2011
  58. 58.
    Kostić, S., Franović, I., Todorović, K., Vasović, N.: Friction memory effect in complex dynamics of earthquake model. Nonlinear Dyn. (2013). doi: 10.1007/s11071-013-0914-8 Google Scholar
  59. 59.
    Ivo Alves, E.: Earthquake forecasting using neural networks: results and future work. Nonlinear Dyn. 44, 341–349 (2006) CrossRefzbMATHGoogle Scholar
  60. 60.
    Yaşar, E.: Variational principles and conservation laws to the Burridge–Knopoff equation. Nonlinear Dyn. 54, 307–312 (2008) CrossRefzbMATHGoogle Scholar
  61. 61.
    Gao, J., Hu, J., Tung, W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68, 431–444 (2012) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Mechanical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.Institute of EngineeringPolytechnic of PortoPortoPortugal

Personalised recommendations