Nonlinear Dynamics

, Volume 74, Issue 1–2, pp 257–270 | Cite as

The effect of time-delayed feedback controller on an electrically actuated resonator

Original Paper

Abstract

This paper presents a study of the effect of a time-delayed feedback controller on the dynamics of a Microelectromechanical systems (MEMS) capacitor actuated as a resonator by DC and AC voltage loads. A linearization analysis is conducted to determine the stability chart of the linearized system equations as a function of the time delay period and the controller gain. Then the method of multiple-scales is applied to determine the response and stability of the system for small vibration amplitude and voltage loads. It is shown that negative time-delay feedback control gain can lead to unstable responses, even if AC voltage is relatively small compared to the DC voltage. On the other hand, positive time delay can considerably strengthen the system stability even in fractal domains. We also show how the controller can be used to control damping in MEMS, increasing or decreasing, by tuning the gain amplitude and delay period. Agreements among the results of a shooting technique, long-time integration, basin of attraction analysis with the perturbation method are achieved.

Keywords

Delayed system Control MEMS Electrostatic force Multiple scales 

Notes

Acknowledgements

The authors are thankful to Professor Ali Nayfeh for fruitful discussions on modeling time-delayed systems using perturbation methods. This research has been supported in part by the National Science Foundation (through grant #0846775).

References

  1. 1.
    Hu, H., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2002) CrossRefMATHGoogle Scholar
  2. 2.
    Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.: Delay Differential Equations: Recent Advances and New Directions. Springer, New York (2009) Google Scholar
  3. 3.
    Erneux, T., Kalmar-Nagy, T.: Nonlinear stability of a delayed feedback controlled container crane. J. Vib. Control 13, 603–616 (2007) CrossRefMATHGoogle Scholar
  4. 4.
    Kalmar-Nagy, T., Stepan, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kurdi, M.H., Haftka, R.T., Schmitz, T.L., Mann, B.P.: A robust semi-analytical method for calculating the response sensitivity of a time delay system. J. Vib. Acoust. 130, 064504 (2008). doi:10.1115/1.2981093 CrossRefGoogle Scholar
  6. 6.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992) CrossRefGoogle Scholar
  7. 7.
    Pyragas, K., Pyragas, V., Benner, H.: Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation. Phys. Rev. E 70, 056222 (2004). doi:10.1103/PhysRevE.70.056222 CrossRefGoogle Scholar
  8. 8.
    Masoud, Z.N., Daqaq, M.F., Nayfeh, N.A.: Pendulation reduction on small ship-mounted telescopic cranes. J. Vib. Control 10(8), 1167–1179 (2004) CrossRefGoogle Scholar
  9. 9.
    Nayfeh, A.H., Nayfeh, N.A.: Time-delay feedback control of lathe cutting tools. J. Vib. Control 18, 1106–1115 (2012) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nakajima, H., Ueda, Y.: Half-period delayed feedback control for dynamical systems with symmetries. Phys. Rev. E 58, 1757–1763 (1998) CrossRefGoogle Scholar
  11. 11.
    Yamasue, K., Hikihara, T.: Persistence of chaos in a time-delayed-feedback controlled Duffing system. Phys. Rev. E 73, 036209 (2006). doi:10.1103/PhysRevE.73.036209 CrossRefGoogle Scholar
  12. 12.
    Yamasue, K., Hikihara, T.: Control of microcantilevers in dynamic force microscopy using time delayed feedback. Rev. Sci. Instrum. 77, 053703 (2006). doi:10.1063/1.2200747 CrossRefGoogle Scholar
  13. 13.
    Hikihara, T., Kawagoshi, T.: An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos. Phys. Lett. A 211, 29–36 (1996) CrossRefGoogle Scholar
  14. 14.
    Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15, 311–327 (1998) CrossRefMATHGoogle Scholar
  15. 15.
    Wang, Z.H., Hu, H.Y.: Stability switches of time-delayed dynamic systems with unknown parameters. J. Sound Vib. 233, 215–233 (2000) CrossRefMATHGoogle Scholar
  16. 16.
    Wang, H.L., Hu, H.Y., Wang, Z.H.: Global dynamics of a Duffing oscillator with delayed displacement feedback. Int. J. Bifurc. Chaos 14, 2753–2775 (2004) CrossRefMATHGoogle Scholar
  17. 17.
    Wang, H.L., Hu, H.Y.: Bifurcation analysis of a delayed dynamic system via method of multiple scales and shooting technique. Int. J. Bifurc. Chaos 15, 425–450 (2005) CrossRefMATHGoogle Scholar
  18. 18.
    Wang, H.L., Wang, Z.H., Hu, H.Y.: Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedback. Acta Mech. Sin. 20, 426–434 (2004) CrossRefGoogle Scholar
  19. 19.
    Hu, H.Y.: Using delayed state feedback to stabilize periodic motions of an oscillator. J. Sound Vib. 275, 1009–1025 (2004) CrossRefMATHGoogle Scholar
  20. 20.
    Wang, Z.H., Hu, H.Y.: Stabilization of vibration systems via delayed state difference feedback. J. Sound Vib. 296, 117–129 (2006) CrossRefMATHGoogle Scholar
  21. 21.
    Hu, H.Y., Wang, Z.H.: Singular perturbation methods for nonlinear dynamic systems with time delays. Chaos Solitons Fractals 40, 13–27 (2009) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    El-Bassiouny, A.F.: Fundamental and subharmonic resonances of harmonically oscillation with time delay state feedback. Shock Vib. 13, 65–83 (2006) Google Scholar
  23. 23.
    El-Bassiouny, A.F.: Vibration control of a cantilever beam with time delay state feedback. Z. Naturforsch. A, J. Phys. Sci. 61, 629–640 (2006) Google Scholar
  24. 24.
    El-Bassiouny, A.F., El-Kholy, S.: Resonances of a nonlinear single-degree-of-freedom system with time delay in linear feedback control. Z. Naturforsch. A, J. Phys. Sci. 65, 357–368 (2010) Google Scholar
  25. 25.
    Qaroush, Y., Daqaq, M.F.: Vibration mitigation in multi-degree-of-freedom structural systems using filter-augmented delayed-feedback algorithms. Smart Mater. Struct. 19, 085016 (2010). doi:10.1088/0964-1726/19/8/085016 CrossRefGoogle Scholar
  26. 26.
    Daqaq, M.F., Alhazza, K.A., Qaroush, Y.: On primary resonances of weakly nonlinear delay systems with cubic nonlinearities. Nonlinear Dyn. 64, 253–277 (2011) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Erneux, T.: Strongly nonlinear oscillators subject to delay. J. Vib. Control 16, 1141–1149 (2010) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rand, R.H., Suchorsky, M.K., Sah, S.M.: Using delay to quench undesirable vibrations. Nonlinear Dyn. 62, 407–416 (2010) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Hamdi, M., Belhaq, M.: Control of Bistability in a Delayed Duffing Oscillator. Adv. Acoust. Vib. 2012, 872498 (2012) Google Scholar
  30. 30.
    Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics—applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997) CrossRefGoogle Scholar
  31. 31.
    Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003) CrossRefMATHGoogle Scholar
  32. 32.
    Alsaleem, F.M., Younis, M.I.: Integrity analysis of electrically actuated resonators with delayed feedback controller. J. Dyn. Syst. Meas. Control 133, 031011 (2011). doi:10.1115/1.4003262 CrossRefGoogle Scholar
  33. 33.
    Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater. Struct. 19, 035016 (2010). doi:10.1088/0964-1726/19/3/035016 CrossRefGoogle Scholar
  34. 34.
    Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010) CrossRefGoogle Scholar
  35. 35.
    Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011) CrossRefGoogle Scholar
  36. 36.
    Nayfeh, A.H.: The Method of Normal Forms. Wiley, New York (2011) CrossRefMATHGoogle Scholar
  37. 37.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981) MATHGoogle Scholar
  38. 38.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995) CrossRefMATHGoogle Scholar
  39. 39.
    Daqaq, M.F., Alhazza, K.A., Arafat, H.N.: Non-linear vibrations of cantilever beams with feedback delays. Int. J. Non-Linear Mech. 43, 962–978 (2008) CrossRefMATHGoogle Scholar
  40. 40.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007) CrossRefMATHGoogle Scholar
  41. 41.
    Ruzziconi, L., Younis, M.I., Lenci, S.: An electrically actuated imperfect microbeam: dynamical integrity for interpreting and predicting the device response. Meccanica (2013). doi:10.1007/s11012-013-9707-x MATHGoogle Scholar
  42. 42.
    Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23(2), 1350026 (2013) (17 pages) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Binghamton University, State University of New YorkBinghamtonUSA

Personalised recommendations