Advertisement

Nonlinear Dynamics

, Volume 74, Issue 1–2, pp 31–44 | Cite as

Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques

  • V. Vembarasan
  • P. Balasubramaniam
Original Paper

Abstract

This paper studies the chaos synchronization of the Rikitake system based on Takagi–Sugeno fuzzy control techniques. By employing the Lyapunov function and linear matrix inequality approach, the fuzzy controller design is presented to synchronize the two identical Rikitake systems. Finally, numerical results and simulations are given to demonstrate the advantages of the proposed results.

Keywords

Synchronization Rikitake system T-S fuzzy control Lyapunov function Linear matrix inequality 

Notes

Acknowledgements

The authors would like to express our sincere thanks to the editor and the anonymous reviewers for their timely and competent reviews.

The research work of V. Vembarasan is supported by DST INSPIRE Fellowship, Ministry of Science, and Technology, Government of India under the grant no. DST/INSPIRE Fellowship/2011/278 dated 21.12.2011.

References

  1. 1.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    González-Miranda, J.M.: Synchronization and Control of Chaos. Imperial College Press, London (2004) Google Scholar
  3. 3.
    Femat, R., Perales, G.S.: Robust Synchronization of Chaotic Systems via Feedback. Lecture Notes in Control and Information Sciences. Springer, Berlin Heidelberg (2008) zbMATHGoogle Scholar
  4. 4.
    Arenas, A., Guilera, A.D., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Femat, R., Solis-Perales, G.: On the chaos synchronization phenomena. Phys. Lett. A 262, 50–60 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Park, J.H., Ji, D.H., Won, S.C., Lee, S.M.: Adaptive H synchronization of unified chaotic systems. Mod. Phys. Lett. B 23, 1157–1169 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huang, H., Feng, G., Sun, Y.: Robust synchronization of chaotic systems subject to parameter uncertainties. Chaos 19, 033128 (2009) CrossRefGoogle Scholar
  8. 8.
    Yajima, T., Nagahama, H.: Geometrical unified theory of Rikitake system and KCC-theory. Nonlinear Anal. 71, e203–e210 (2009) CrossRefGoogle Scholar
  9. 9.
    Sun, M., Jia, Q., Tian, L.: A new four-dimensional energy resources system and its linear feedback control. Chaos Solitons Fractals 39, 101–108 (2009) CrossRefzbMATHGoogle Scholar
  10. 10.
    Gois, S.R.F.S.M., Savi, M.A.: An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos Solitons Fractals 41, 2553–2565 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Aghababa, M.P., Aghababa, H.P.: Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties. Nonlinear Dyn. 67, 2689–2701 (2012) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rubchinsky, L.L., Park, C., Worth, R.M.: Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn. 68, 329–346 (2012) CrossRefGoogle Scholar
  13. 13.
    Lee, T.H., Park, J.H., Wu, Z.-G., Lee, S.-C., Lee, D.H.: Robust H decentralized dynamic control for synchronization of a complex dynamical network with randomly occurring uncertainties. Nonlinear Dyn. 70, 559–570 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Balasubramaniam, P., Vembarasan, V.: Synchronization of recurrent neural networks with mixed time-delays via output coupling with delayed feedback. Nonlinear Dyn. 70, 677–691 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Theesar, S.J.S., Banerjee, S., Balasubramaniam, P.: Synchronization of chaotic systems under sampled-data control. Nonlinear Dyn. 70, 1977–1987 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, M., Wu, Q., Jiang, C.: Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn. 70, 2421–2432 (2012) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jirsa, V.K.: Dispersion and time delay effects in synchronized spike-burst networks. Cogn. Neurodyn. 2, 29–38 (2008) CrossRefGoogle Scholar
  18. 18.
    Rikitake, T.: Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 54, 89–105 (1958) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    McMillen, T.: The shape and dynamics of the Rikitake attractor. Nonlinear J. 1, 1–10 (1999) Google Scholar
  20. 20.
    Llibre, J., Messias, M.: Global dynamics of the Rikitake system. Physica D 238, 241–252 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ito, K.: Chaos in the Rikitake two-disc dynamo system. Earth Planet. Sci. Lett. 51, 451–456 (1980) CrossRefGoogle Scholar
  22. 22.
    Miura, T., Kai, T.: Chaotic behaviours of a system of three disk dynamos. Phys. Lett. 101A, 450–454 (1984) CrossRefGoogle Scholar
  23. 23.
    Vincent, U.E.: Synchronization of Rikitake chaotic attractor using active control. Phys. Lett. A 343, 133–138 (2005) CrossRefzbMATHGoogle Scholar
  24. 24.
    Cook, A.E.: Two-disc dynamo with viscous friction and time delay. Proc. Camb. Philos. Soc. 71, 135–153 (1972) CrossRefzbMATHGoogle Scholar
  25. 25.
    Wu, X.-J., Liu, J.-S., Chen, G.-R.: Chaos synchronization of Rikitake chaotic attractor using the passive control technique. Nonlinear Dyn. 53, 45–53 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pehlivan, I., Uyaroğlu, Y.: Rikitake attractor and it’s synchronization application for secure communication systems. J. Appl. Sci. 7, 232–236 (2007) CrossRefGoogle Scholar
  27. 27.
    Mata-Machuca, J.L., Martìnez-Guerra, R., Aguilar-Lòpez, R., Aguilar-Ibañez, C.: Synchronization of an uncertain chaotic system based on sliding mode control. In: 2010 11th International Workshop on Variable Structure Systems, Mexico City, Mexico, pp. 239–243 (2010) CrossRefGoogle Scholar
  28. 28.
    Aguilar-Ibañez, C., Martìnez-Guerra, R., Aguilar-Lòpez, R., Mata-Machuca, J.L.: Synchronization and parameter estimations of an uncertain Rikitake system. Phys. Lett. A 374, 3625–3628 (2010) CrossRefzbMATHGoogle Scholar
  29. 29.
    Mata-Machuca, J.L., Martìnez-Guerra, R., Aguilar-Lòpez, R., Aguilar-Ibañez, C.: A chaotic system in synchronization and secure communications. Commun. Nonlinear Sci. Numer. Simul. 17, 1706–1713 (2012) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Danca, M.-F., Codreanu, S.: Modeling numerically the Rikitake’s attractors by parameter switching. J. Franklin Inst. 349, 861–878 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 15, 116–132 (1995) Google Scholar
  32. 32.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001) CrossRefGoogle Scholar
  33. 33.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9, 324–332 (2001) CrossRefGoogle Scholar
  34. 34.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14, 676–697 (2006) CrossRefGoogle Scholar
  35. 35.
    Wu, S.-J.: Affine TS-model-based fuzzy regulating/servo control design. Fuzzy Sets Syst. 158, 2288–2305 (2007) CrossRefzbMATHGoogle Scholar
  36. 36.
    Precup, R.-E., Hellendoorn, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62, 213–226 (2011) CrossRefGoogle Scholar
  37. 37.
    Assawinchaichote, W., Junhom, S.: H fuzzy controller design for HIV/AIDS infection system with dual drug dosages via an LMI approach. Int. Energy J. 5, 27–33 (2011) Google Scholar
  38. 38.
    Bououden, S., Chadli, M., Filali, S., Hajjaji, A.El.: Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach. Renew. Energy 37, 434–439 (2012) CrossRefGoogle Scholar
  39. 39.
    Sun, Y., Wei, Z., Sun, G., Ju, P., Huang, S.: Robust stabilization and synchronization of nonlinear energy resource system via fuzzy control approach. Int. J. Fuzzy Syst. 14, 337–343 (2012) MathSciNetGoogle Scholar
  40. 40.
    Lian, K.-Y., Chiu, C.-S., Chiang, T.-S., Liu, P.: LMI-based fuzzy chaotic synchronization and communications. IEEE Trans. Fuzzy Syst. 9, 539–553 (2001) CrossRefGoogle Scholar
  41. 41.
    Lian, K.-Y., Chiang, T.-S., Chiu, C.-S., Liu, P.: Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 31, 66–83 (2001) CrossRefGoogle Scholar
  42. 42.
    Lian, K.-Y., Liu, P., Wu, T.-C., Lin, W.-C.: Chaotic control using fuzzy model-based methods. Int. J. Bifurc. Chaos 12, 1827–1841 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wang, Y., Fan, Y., Wang, Q., Zhang, Y.: Adaptive fuzzy synchronization for a class of chaotic systems with unknown nonlinearities and disturbances. Nonlinear Dyn. 69, 1167–1176 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Niu, Y.-J., Wang, X.-Y.: A novel adaptive fuzzy sliding-mode controller for uncertain chaotic systems. Nonlinear Dyn. (2012). doi: 10.1007/s11071-012-0444-9 Google Scholar
  45. 45.
    Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C.: Adaptive synchronization for uncertain complex dynamical network using fuzzy disturbance observer. Nonlinear Dyn. 71, 223–234 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Meda-Campaña, J.A., Castillo-Toledo, B., Chen, G.: Synchronization of chaotic systems from a fuzzy regulation approach. Fuzzy Sets Syst. 160, 2860–2875 (2009) CrossRefzbMATHGoogle Scholar
  47. 47.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994) CrossRefGoogle Scholar
  48. 48.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsGandhigram Rural Institute—Deemed UniversityGandhigramIndia

Personalised recommendations