Advertisement

Nonlinear Dynamics

, Volume 73, Issue 3, pp 1933–1943 | Cite as

Friction memory effect in complex dynamics of earthquake model

  • Srđan Kostić
  • Igor Franović
  • Kristina Todorović
  • Nebojša Vasović
Original Paper

Abstract

In present paper, an effect of delayed frictional healing on complex dynamics of simple model of earthquake nucleation is analyzed, following the commonly accepted assumption that frictional healing represents the main mechanism for fault restrengthening. The studied model represents a generalization of Burridge–Knopoff single-block model with Dieterich–Ruina’s rate and state dependent friction law. The time-dependent character of the frictional healing process is modeled by introducing time delay τ in the friction term. Standard local bifurcation analysis of the obtained delay-differential equations demonstrates that the observed model exhibits Ruelle–Takens–Newhouse route to chaos. Domain in parameters space where the solutions are stable for all values of time delay is determined by applying the Rouché theorem. The obtained results are corroborated by Fourier power spectra and largest Lyapunov exponents techniques. In contrast to previous research, the performed analysis reveals that even the small perturbations of the control parameters could lead to deterministic chaos, and, thus, to instabilities and earthquakes. The obtained results further imply the necessity of taking into account this delayed character of frictional healing, which renders complex behavior of the model, already captured in the case of more than one block.

Keywords

Spring-block model State variable Time delay Quasiperiodicity Deterministic chaos 

Notes

Acknowledgements

This research has been supported by the Ministry of Education, Science, and Technological development, Contracts Nos. 176016, 171015, and 171017.

References

  1. 1.
    Bolt, A.B.: Earthquakes. Freeman, New York (2003) Google Scholar
  2. 2.
    Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  3. 3.
    Marone, C.: Laboratory derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998) CrossRefGoogle Scholar
  4. 4.
    Dieterich, J.H.: Modeling of rock friction: 1; experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979) CrossRefGoogle Scholar
  5. 5.
    Ruina, A.L.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983) CrossRefGoogle Scholar
  6. 6.
    Perrin, G., Rice, J.R., Zheng, G.: Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids 43, 1461–1495 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Rabinowicz, E.: The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. Lond. 71, 668–675 (1958) CrossRefGoogle Scholar
  8. 8.
    Tolstoi, D.M.: Significance of the normal degree of freedom and natural normal vibrations in contact friction. Wear 10, 199–213 (1967) CrossRefGoogle Scholar
  9. 9.
    Pomeau, Y., Le Berre, M.: Critical speed-up vs critical slow-down: a new kind of relaxation oscillation with application to stick-slip phenomena (2011). arXiv:1107.3331v1
  10. 10.
    Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967) Google Scholar
  11. 11.
    Dieterich, J.H.: A model for the nucleation of earthquake slip. In: Das, S., Boatwright, J., Scholz, C. (eds.) Earthquakes Source Mechanics. Geophys. Monogr. Ser., vol. 37, pp. 36–49. Am. Geophys. Union, Washington (1986) Google Scholar
  12. 12.
    Dieterich, J.H.: Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics 211, 115–134 (1992) CrossRefGoogle Scholar
  13. 13.
    Scholz, C.H., Aviles, C.A., Wesnousky, S.G.: Scaling differences between large interplate and intraplate earthquakes. Bull. Seismol. Soc. Am. 76, 65–70 (1986) Google Scholar
  14. 14.
    Marone, C., Vidale, J.E., Ellsworth, W.: Fault healing inferred from time dependent variations in source properties of repeating earthquakes. Geophys. Res. Lett. 22, 3095–3098 (1995) CrossRefGoogle Scholar
  15. 15.
    Marone, C.: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69–72 (1998) CrossRefGoogle Scholar
  16. 16.
    Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010) CrossRefGoogle Scholar
  17. 17.
    Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395–426 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Burić, N., Todorović, D.: Dynamics of delay-differential equations modeling immunology of tumor growth. Chaos Solitons Fractals 13, 645–655 (2002) CrossRefzbMATHGoogle Scholar
  19. 19.
    De Sousa Vieira, M.: Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett. 82, 201–204 (1999) CrossRefGoogle Scholar
  20. 20.
    Erickson, B., Birnir, B., Lavallee, D.: A model for aperiodicity in earthquakes. Nonlinear Process. Geophys. 15, 1–12 (2008) CrossRefGoogle Scholar
  21. 21.
    Erickson, B.A., Birnir, B., Lavallée, D.: Periodicity, chaos and localization in a Burridge–Knopoff model of an earthquake with rate-and-state friction. Geophys. J. Int. 187, 178–198 (2011) CrossRefGoogle Scholar
  22. 22.
    Dieterich, J.H., Kilgore, B.D.: Direct observation of frictional contacts: new insights for state dependent properties. Pure Appl. Geophys. 143, 283–302 (1994) CrossRefGoogle Scholar
  23. 23.
    Rice, J.R.: Spatio-temporal complexity of slip on a fault. J. Geophys. Res. 98, 9885–9907 (1993) CrossRefGoogle Scholar
  24. 24.
    Lapusta, N., Rice, J.R.: Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. 108, 1–18 (2003) CrossRefGoogle Scholar
  25. 25.
    Szkutnik, J., Kawecka-Magiera, B., Kulakowski, K.: History-dependent synchronization in the Burridge–Knopoff model. Tribol. Ser. 43, 529–536 (2003) CrossRefGoogle Scholar
  26. 26.
    Engelborghs, K.: DDE-BIFTOOL v. 2.03: a MATLAB package for bifurcation analysis of delay differential equations (2000) Google Scholar
  27. 27.
    Engelborghs, K., Luzyanina, T., Samaey, G.: Technical report TW-330, Department of Computer Science, K.U. Leuven, Leuven, Belgium (2001) Google Scholar
  28. 28.
    Luzyanina, T., Enghelborghs, K., Ehl, S., Klenerman, P., Bocharov, G.: Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis. Math. Biosci. 173, 1–23 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Haegeman, B., Engelborghs, K., Roose, D., Pieroux, D., Erneux, T.: Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback. Phys. Rev. E 66, 046216 (2002) CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Belair, J., Campbell, S.A.: Stability and bifurcations of equilibria in a multiple delayed differential equation. SIAM J. Appl. Math. 54, 1402–1424 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Campbell, S.A., Belair, J., Ohira, T., Milton, J.: Limit cycles, tori and complex dynamics in a second-order differential equation with delayed negative feedback. J. Dyn. Differ. Equ. 7, 213–235 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Titchmarsh, E.C.: Theory of Functions. Oxford University Press, Oxford (1939) zbMATHGoogle Scholar
  34. 34.
    Hale, J., Lunel, S.V.: Introduction to Functional Differential Equations. Springer, New York (1983) Google Scholar
  35. 35.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2000) Google Scholar
  36. 36.
    Kuznetsov, Y.A.: Elements of the Applied Bifurcation Theory. Springer, New York (2004) CrossRefGoogle Scholar
  37. 37.
    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–172 (1971) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ramana Reddy, D.V., Sen, A., Johnson, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998) CrossRefGoogle Scholar
  39. 39.
    Campbell, S.A.: Time delays in neural systems. In: Jirsa, V.K., McIntosh, A.R. (eds.) Handbook on Brain Connectivity, pp. 65–90. Springer, Berlin (2007) CrossRefGoogle Scholar
  40. 40.
    Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 027201 (2010) CrossRefGoogle Scholar
  41. 41.
    Newhouse, S., Ruelle, D., Takens, F.: Occurrence of strange axiom-A attractors near quasiperiodic flow on 7, m>3. Commun. Math. Phys. 64, 35–44 (1978) MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Schmittbuhl, J., Vilotte, J.P., Roux, S.: Propagative macrodislocation modes in an earthquake fault model. Europhys. Lett. 21, 375–380 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Srđan Kostić
    • 1
  • Igor Franović
    • 2
  • Kristina Todorović
    • 3
  • Nebojša Vasović
    • 1
  1. 1.University of Belgrade Faculty of Mining and GeologyBelgradeSerbia
  2. 2.University of Belgrade Faculty of PhysicsBelgradeSerbia
  3. 3.University of Belgrade Faculty of PharmacyBelgradeSerbia

Personalised recommendations