Advertisement

Nonlinear Dynamics

, Volume 73, Issue 3, pp 1849–1861 | Cite as

Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint

  • Bin Xu
  • Zhongke Shi
  • Chenguang Yang
  • Shixing Wang
Original Paper

Abstract

Considering the use of digital computers and samplers in the control circuitry, this paper describes the controller design in discrete time for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) with Neural Network (NN). Motivated by time-scale decomposition, the states are decomposed into slow dynamics of velocity, altitude and fast dynamics of attitude angles. By command transformation, the reference command for γθ p q subsystem is derived from hγ subsystem. Furthermore, to simplify the backstepping design, we propose the controller for γθ p q subsystem from prediction function without virtual controller. For the velocity subsystem, the throttle setting constraint is considered and new NN adaption law is designed by auxiliary error dynamics. The uniformly ultimately boundedness (UUB) of the system is proved by Lyapunov stability method. Simulation results show the effectiveness of the proposed algorithm.

Keywords

Hypersonic flight control Time-scale decomposition System transformation Neural network saturation 

Notes

Acknowledgements

This work was supported by the DSO National Laboratories of Singapore through a Strategic Project Grant (Project No. DSOCL10004), National Science Foundation of China (Grant No. 61134004, 61005085), NWPU Basic Research Funding (Grant No. JC20120236) and Fundamental Research Funds for the Central Universities (2012QNA4024).

References

  1. 1.
    Ataei, A., Wang, Q.: Nonlinear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6(2), 203–215 (2012) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Buschek, H., Calise, A.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control Dyn. 20(1), 42–48 (1997) CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, A., Bhat, S.: Output feedback-based discrete-time sliding-mode controller design for model aircraft. J. Guid. Control Dyn. 28(1), 177–181 (2005) CrossRefGoogle Scholar
  4. 4.
    Chen, M., Ge, S., How, B.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010) CrossRefGoogle Scholar
  5. 5.
    Chen, M., Ge, S., Ren, B.: Robust attitude control of helicopters with actuator dynamics using neural networks. IET Control Theory Appl. 4(12), 2837–2854 (2010) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, M., Jiang, B.: Robust attitude control of near space vehicles with time-varying disturbances. Int. J. Control. Autom. Syst. 11(1), 182–187 (2013) CrossRefGoogle Scholar
  7. 7.
    Chen, M., Jiang, C.S., Wu, Q.X.: Disturbance-observer-based robust flight control for hypersonic vehicles using neural networks. Adv. Sci. Lett. 4(4–5), 4–5 (2011) Google Scholar
  8. 8.
    Gao, D., Sun, Z.: Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci. China, Inf. Sci. 54(3), 521–528 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gao, D., Sun, Z., Du, T.: Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: IEEE International Conference on Automation and Logistics, Jinan, China, pp. 2314–2319. IEEE Press, New York (2007) CrossRefGoogle Scholar
  10. 10.
    Gao, D., Sun, Z., Luo, X., Du, T.: Fuzzy adaptive control for hypersonic vehicle via backstepping method. IET Control Theory Appl. 25(5), 805–810 (2008) Google Scholar
  11. 11.
    He, P., Jagannathan, S.: Reinforcement learning-based output feedback control of nonlinear systems with input constraints. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(1), 150–154 (2005) CrossRefGoogle Scholar
  12. 12.
    He, P., Jagannathan, S.: Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37(2), 425–436 (2007) CrossRefGoogle Scholar
  13. 13.
    Janardhanan, S., Bandyopadhyay, B.: Multirate output feedback based robust quasi-sliding mode control of discrete-time systems. IEEE Trans. Autom. Control 52(3), 499–503 (2007) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mareels, I., Penfold, H., Evans, R.: Controlling nonlinear time-varying systems via Euler approximations. Automatica 28(4), 681–696 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Nešić, D., Teel, A.: Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model. Automatica 42(10), 1801–1808 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Pan, Y., Er, M., Huang, D., Wang, Q.: Adaptive fuzzy control with guaranteed convergence of optimal approximation error. IEEE Trans. Fuzzy Syst. 19(5), 807–818 (2011) CrossRefGoogle Scholar
  17. 17.
    Stengel, R., Broussard, J., Berry, P.: Digital controllers for VTOL aircraft. IEEE Trans. Aerosp. Electron. Syst. 1, 54–63 (1978) CrossRefGoogle Scholar
  18. 18.
    Xu, B., Gao, D., Wang, S.: Adaptive neural control based on HGO for hypersonic flight vehicles. Sci. China, Inf. Sci. 54(3), 511–520 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control (2013). doi: 10.1002/asjc.679 Google Scholar
  20. 20.
    Xu, B., Sun, F., Liu, H., Ren, J.: Adaptive kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory Appl. 6(4), 487–497 (2012) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xu, B., Sun, F., Yang, C., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004) CrossRefGoogle Scholar
  24. 24.
    Yang, C., Ge, S., Xiang, C., Chai, T., Lee, T.: Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans. Neural Netw. 19(11), 1873–1886 (2008) CrossRefGoogle Scholar
  25. 25.
    Yang, C., Ge, S.S., Lee, T.H.: Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions. Automatica 45(1), 270–276 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Yang, C., Li, J., Li, Z.: Optimized adaptive control design and NN based trajectory planning for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Syst. Man Cybern. 43(1), 24–36 (2013) Google Scholar
  27. 27.
    Yang, C., Li, Y., Ge, S., Lee, T.: Adaptive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings. Int. J. Control 83(10), 2120–2133 (2010) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bin Xu
    • 1
  • Zhongke Shi
    • 1
  • Chenguang Yang
    • 2
  • Shixing Wang
    • 3
  1. 1.School of AutomationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Computing and MathematicsPlymouth UniversityPlymouthUK
  3. 3.Department of Control EngineeringNaval Aeronautical and Astronautical UniversityYantaiChina

Personalised recommendations